
MSR-TR-2015-20
Updated Version – August 28, 2015

Web-based Question Answering: Revisiting AskMSR

Chen-Tse Tsai∗
University of Illinois

Urbana, IL 61801, USA
ctsai12@illinois.edu

Wen-tau Yih Christopher J.C. Burges
Microsoft Research

Redmond, WA 98052, USA
{scottyih,cburges}@microsoft.com

Abstract

Web-based QA, pioneered by Kwok et
al. (2001), successfully demonstrated the
power of Web redundancy. Early WebQA
systems, such as AskMSR (Brill et al.,
2001), rely on various kinds of rewriting
and pattern-generation methods for iden-
tifying answer paragraphs and for extract-
ing answers. In this paper, we conducted
an experimental study to examine the im-
pact of the advance of search engine tech-
nologies and the growth of the Web, to
such Web-QA approaches. When apply-
ing AskMSR to a new question answering
dataset created using historical TREC-QA
questions, we find that the key step, query
pattern generation is no longer required
but instead, deeper NLP analysis on ques-
tions and snippets remains critical. Based
on this observation, we propose a Web-QA
system that removes the query pattern gen-
eration step and improves answer candi-
date generation and ranking steps, and out-
performs AskMSR by 34 points of MRR.
The revised dataset is made publicly avail-
able with this paper.

1 Introduction

In this paper, we consider the problem of open-
domain factoid question answering, where the an-
swers are usually short phrases or few words. For
instance,

Question: Where did Bill Gates go to college?
Answer: Havard University

This form of question answering had been the fo-
cus of NIST TREC-QA tracks (Voorhees and Tice,
2000), which were held each year from 1999 to
2007. Due to the complexity of possible formula-
tions of the same question and the variety of ways

∗Work conducted while interning at Microsoft Research.

a correct answer can be presented in documents,
deep natural language understanding and reason-
ing was generally viewed as needed for build-
ing a good QA system. Contrary to this belief,
one of the top performing systems in TREC 2001,
AskMSR (Brill et al., 2001), was built using very
simple rules by leveraging the Web documents.
More specifically, it tries to generate variations of
the given question as textual patterns that can oc-
cur in the documents, along with answers. For ex-
ample, one of the patterns of the above question is
“Bill Gates went to college at”. Then, the system
queries a search engine by issuing this pattern with
quotes as the query. By assuming that the answer
would appear near the pattern in the document, the
system then tries to extract the answer from the top
retrieved snippets (summary of documents).

Although this question pattern generation pro-
cess was viewed as the key step in Web-QA sys-
tems like AskMSR and had later been studied ex-
tensively (Yang et al., 2003; Zhao et al., 2007), its
effect has become less clear nowadays due to two
reasons. First, because of the popularity of com-
munity QA sites like Yahoo! Answers, the origi-
nal questions have been included with the answers.
Using the original question as query could better
match the relevant documents instead of using arti-
ficial question patterns. Second, given the advance
of modern search engine technologies, especially
on general query reformulation using query and
click logs analysis (Huang and Efthimiadis, 2009),
the existing question pattern generation process
could be redundant and less optimal.

In this work, we revisit the design of Web-
QA systems and examine the effectiveness of in-
dividual components of a representative system,
AskMSR. We show that a Web-based QA system
without question pattern generation can perform
significantly better. By removing the pattern gen-
eration step, the recall of answer candidates in-
creases without sacrificing precision. In addition,

we improve the answer candidate generation and
ranking components. In AskMSR, the answer can-
didates are extracted based on the n-grams in the
snippets. We propose a number of simple rules
to categorize questions and incorporate a Named
Entity Recognizer (NER) to extract answer candi-
dates which match the target answer type. Instead
of ranking answer candidates only by the number
of occurrences in the snippets, we study several
features that measure the relatedness of a question
to an answer candidate.

Our evaluation is done using five years of TREC
factoid question answering datasets. As many an-
swers are outdated for a Web-QA system, in order
to have an accurate and fair comparison, we up-
date the answers by crowdsourcing using Amazon
Mechanical Turk. The revised dataset is released
with this paper. We believe it will provide future
researchers a valuable benchmark dataset for eval-
uating factoid question answering systems.

2 Approach

There are three steps in our system framework.
Given a question, the first step is to catego-
rize questions based on the type of answers it is
looking for. We then issue the question as the
query to a search engine and extract answer can-
didates from the top retrieved snippets. Finally,
a trained ranking model which uses information
from Wikipedia and WordNet is applied to rank
the answer candidates. We describe each algorith-
mic component in the following sections

2.1 Question Classification

Classifying questions into several pre-defined tar-
get answer types has been shown as an impor-
tant step for locating answer candidates accu-
rately (Hovy et al., 2001; Li and Roth, 2002). We
use a few simple rules to classify questions into 13
categories. The categories are based on the named
entity types defined an NER1, which is applied in
the answer candidate generation step. The full list
of 13 categories and the corresponding classifica-
tion rules are listed in Table 1.

2.2 Answer Candidate Extraction

Given a question, instead of rewriting it by several
hand-crafted rules as AskMSR does, we directly
submit the whole question as a query to a search

1We use an in-house named entity recognizer, which con-
sists of 16 named entity types.

Type Rules
continent “what/which continent”
county “what/which county”
city “what/which city”
state “what/which state”
airport “what/which airport”
country “what/which country”
location starts with “where”, contains “birthplace”
person starts with “who”

date “what date/day/year”, contains “birthday”
starts with “when” or “in what year”

digit “how much/many”, “how old”
company “what/which company”
name contains “name”
other all the other questions

Table 1: 13 question types and the corresponding
classification rules.

engine, and collect the top 40 returned snippets.
The next step is to extract answer candidates from
these snippets. If the given question is not the
“other” type, we apply an NER on the snippets
to extract entities with the target answer type of
the question as answer candidates. If the question
is not classified as any named entity type, we
consider all unigrams, bigrams, and trigrams in
the snippets as answer candidates.

Filtering One problem of using n-grams is that
many of them are not meaningful phrases. To
improve the quality of the answer candidate
set, we remove n-grams that satisfy any of the
following conditions: (1) containing a verb, (2)
is a punctuation as a single token, (3) starting or
ending with a stop word, and (4) consisting of
words in the question. In addition, for questions
asking for a specific entity, we require that an
answer candidate needs to be a title in Wikipedia
if the candidate does not contain any digit.
Applying this filtering rule largely increases the
precision of answer candidate extraction.

Tiling Even when each answer candidate is a
meaningful phrase, there might be duplicate infor-
mation among all candidates. For instance, “Har-
vard” and “Harvard University” are both candi-
dates and “Harvard” should have counts no less
than “Harvard University” does due to the na-
ture of n-gram. Although both of them could be
the correct answer, we want to reduce the redun-
dant information and provide the most complete
answers. To resolve this issue, we apply the n-
gram tiling algorithm used in AskMSR. The algo-
rithm constructs longer n-grams from a sequence
of overlapping shorter n-grams. For example, the

Figure 1: An example of answer candidates tiling.
The right list is the result of performing answer
candidates tiling on the left list.

list in Figure 1 (left) shows answer candidates be-
fore performing tiling. After tiling, only the longer
answer candidates are kept (the right list).

2.3 Answer Candidate Ranking

Unlike the original AskMSR approach, where
answer candidates are ranked by the frequency
counts, we learn a binary classifier instead. The
classifier relies on two vector-space models to
capture semantic relatedness between the question
and answers, as well as other simple features.

WordNet Noun Beginners Matching In this
model, we use the 25 unique noun beginners in
WordNet to represent questions and answers.
These beginners are the top words of the WordNet
noun taxonomy, each of which corresponds to
a distinct semantic domain. We create a 25-
dimensional vector for each question and answer
candidate by extracting nouns and looking up
their beginners. For a question vector, the i-th
component of the vector is the total number of
i-th beginner appearing in the question. We also
increase the counts by one for the first and last be-
ginner in the question since they may carry more
information. For an answer candidate, we create
the vector using the count of beginners of the
words in it, but also take the named entity types
into account. In particular, we use the named
entity type provided to generate the corresponding
beginner. For example, if the named entity type is
“Person”, we add the beginner which represents
the “Person” sense into the vector.

Wikipedia Introduction Matching This model
measures the textual similarity between a question
and an answer candidate. Since an answer can-
didate only consists of few words, we use the in-
troduction section in the corresponding Wikipedia
page to enrich textual information. Note that we
simply use the Wikipedia page where the title
exactly matches the answer candidate. In other

words, no entity disambiguation is performed. If
an answer string is ambiguous, there will be no
match since titles in Wikipedia have some ad-
ditional description to distinguish an ambiguous
concept (e.g,. Insurgent (novel) vs. Insurgent
(film)). Each question and answer candidate is rep-
resented by a bag-of-word vector. The i-th compo-
nent of an vector indicates the term frequency of
the i-th word in the vocabulary.

For both vector space models, we take the inner
product between the vectors of a question and an
answer as the score, indicating how relevant the
answer candidate is to the question. We further
combine these two scores with other features via
training a binary classifier. For a pair of ques-
tion and answer candidate, we add the following
sparse features: words in the question and the an-
swer candidate, named entity types in the ques-
tion and the answer candidate, total number of oc-
currences of the answer candidate in the retrieved
snippets, and the initial ranking (by the number of
occurrences in snippets). Note that words are low-
ercased and lemmatized in all the features.

3 Evaluation

We first describe how we construct the new dataset
by revising answers from five years of TREC
shared tasks, and then we compare each proposed
algorithmic component with the AskMSR system.

3.1 Dataset

The Text REtrieval Conference (TREC) held a
question answering track (Voorhees and Tice,
2000) each year from 1999 to 2007. The data used
in the competitions are publicly available and have
been a popular benchmark for evaluating various
QA systems. We take the factoid QA collections
from 1999 to 2003 (TREC 8-12) to develop our
system. Excluding the questions which were left
out from the evaluation in the shared tasks, there
are 2,131 questions in total. We use the 1,751
questions from 1999 to 2001 for training and the
380 questions from 2002 for testing.

The systems participated in the shared tasks
were automatically evaluated against answer pat-
terns which consist of regular expressions to cap-
ture possible answer strings. Although these pat-
terns are also publicly available, they became in-
accurate several years after the data was released.
This could be due to two reasons. First, in the
shared tasks, participants are asked to extract an-

Approach MRR
1 AskMSR2 27.22
2 Direct Query 45.24
3 Direct Query + Question Type 57.27
4 WordNet Beginners Matching 57.33
5 Wikipeida Introduction Matching 61.06
6 AskMSR+ 62.11

Table 2: An ablation study of how each proposed
component improves over the original AskMSR.

swers from a collection of documents. Some an-
swers may not occur in the documents but exist in
the snippets retrieved by a search engine. In addi-
tion, the patterns may only be able to capture the
wording used in the documents, and thus fail to
cover other possible expressions of the answers.
Second, answers could change over time, such as
those to the questions asking about the population
of a city and the current president of a country.

We use Amazon Mechanical Turk to collect the
answers of these 2,131 questions. Along with the
question, we provide the top 40 snippets retrieved
by Bing to the Turkers and ask them to extract an
answer from each snippet. If a snippet does not
contain any answer, “None” should be provided
as the answer. Each snippet is examined by three
Turkers and the majority of the three answers is
considered as an answer pattern. We manually re-
solve the cases where three answers are all differ-
ent.

3.2 Experimental Results

In our experiments, we use Bing as the search en-
gine to query relevant snippets and an SVM model
with polynomial kernel of degree 3 is used as the
binary classifier. The decision value obtained from
the model is used as the relevance score to rank an-
swer candidates. Following the evaluation method
used in TREC, we take the Mean Reciprocal Rank
(MRR) of the top 5 answer candidates as our main
evaluation metric: MRR = 1

N

∑N
i=1

1
ri

, where N
is the total number of questions, and ri is the high-
est ranking position of a correct answer to the i-th
question. If no correct answer found in the list of
answers, 1

ri
is set to 0.

Table 2 shows a comparison between the orig-
inal AskMSR system and each proposed algorith-
mic component. The main difference between
AskMSR and Direct Query is that Direct Query is-

2We follow the implementation from Cucerzan and
Agichtein (2005) which added more query reformulation pat-
terns to Brill et al. (2001), and change the underlying search
engine to Bing.

sues the question string to a search engine directly
and considers all n-grams from the top retrieved
snippets, whereas AskMSR queries a search en-
gine by several reformulations of the original
question in order to mine the n-grams around the
query strings. Note that the answer candidates are
ranked by the number of occurrences for both ap-
proaches. We can see that Direct Query already
outperforms AskMSR significantly without apply-
ing other proposed methods.

In the third approach, we add the proposed sim-
ple question classification method, as well as the
candidate generation approach that extracts the
named entities with the corresponding target an-
swer type from the snippets. The 12-point im-
provement over Direct Query implies that question
typing is a very important step which poses seman-
tic constraints on possible answer candidates, and
thus prunes many irrelevant answer candidates.

The last three approaches re-rank the answer
candidates of the third approach by the proposed
WordNet Noun Beginners Matching, Wikipedia
Introduction Matching, and the final combination
by training a binary classifier respectively. We
can see that Wikipedia Introduction Matching per-
forms very well when comparing to ranking by
counts, which indicates that it is useful to enrich
contextual information of answer candidates from
other knowledge sources. Finally, AskMSR+ is
the full proposed system, which combines the two
vector-space models with other semantic and syn-
tactic features extracted from the snippets and the
question. By learning from the training data, a bi-
nary classifier can achieve the best ranking result
on the test set. It would be interesting to investi-
gate other learning to rank algorithms.

4 Conclusions

In this paper, we revisit the design of Web-QA
systems and propose an enhanced framework. By
removing the question pattern generation process
and by adding semantic matching features be-
tween questions and answers our system achieves
a substantial gain on TREC-QA questions. We
hope this study can provide an updated view of
Web-based question answering and with the new
QA dataset, enable more future research on this
important problem.

References
Eric Brill, Jimmy J Lin, Michele Banko, Susan T Du-

mais, and Andrew Y Ng. 2001. Data-intensive
question answering. In TREC.

Silviu Cucerzan and Eugene Agichtein. 2005. Factoid
question answering over unstructured and structured
web content. In TREC, volume 72, page 90.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. Toward
semantics-based answer pinpointing. In Proceed-
ings of the first international conference on Human
language technology research, pages 1–7. Associa-
tion for Computational Linguistics.

Jeff Huang and Efthimis N Efthimiadis. 2009. Ana-
lyzing and evaluating query reformulation strategies
in web search logs. In Proceedings of the 18th ACM
conference on Information and knowledge manage-
ment, pages 77–86. ACM.

Cody Kwok, Oren Etzioni, and Daniel S Weld. 2001.
Scaling question answering to the web. ACM Trans-
actions on Information Systems (TOIS), 19(3):242–
262.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1,
pages 1–7. Association for Computational Linguis-
tics.

Ellen M Voorhees and Dawn M Tice. 2000. Building
a question answering test collection. In Proceedings
of the 23rd annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 200–207. ACM.

Hui Yang, Tat-Seng Chua, Shuguang Wang, and Chun-
Keat Koh. 2003. Structured use of external knowl-
edge for event-based open domain question answer-
ing. In Proceedings of the 26th annual international
ACM SIGIR conference on Research and develop-
ment in informaion retrieval, pages 33–40. ACM.

Shiqi Zhao, Ming Zhou, and Ting Liu. 2007. Learning
question paraphrases for QA from Encarta logs. In
IJCAI, pages 1795–1801.

