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ABSTRACT
Naive Bayes and logistic regression perform well in different regimes.
While the former is a very simple generative model which is effi-
cient to train and performs well empirically in many applications,
the latter is a discriminative model which often achieves better ac-
curacy and can be shown to outperform naive Bayes asymptotically.
In this paper, we propose a novel hybrid model, partitioned logis-
tic regression, which has several advantages over both naive Bayes
and logistic regression. This model separates the original feature
space into several disjoint feature groups. Individual models on
these groups of features are learned using logistic regression and
their predictions are combined using the naive Bayes principle to
produce a robust final estimation. We show that our model is better
both theoretically and empirically. In addition, when applying it in
a practical application, email spam filtering, it improves the nor-
malized AUC score at 10% false-positive rate by 28.8% and 23.6%
compared to naive Bayes and logistic regression, when using the
exact same training examples.
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Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.4.3 [Communications
Applications]: Electronic mail

1. INTRODUCTION
Due to having the same linear functional form when used as a

classifier, naive Bayes and logistic regression have been called a
generative–discriminative pair of classifiers. The former approach
learns a model that estimates the joint probability, P (X, Y ), where
Y is the class label and X is the example feature vector. The poste-
rior probability of the class, which is estimated by applying Bayes
rule, is used to predict the most likely label. On the other hand, the
latter approach tries to learn a model to directly estimate the poste-
rior, P (Y |X). In many applications, discriminatively trained mod-
els outperform their generatively trained counterparts (e.g., [25,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-59593-609-7/07/0008 ...$5.00.

19]). This empirical result is also supported from the perspective
of computational learning theory [32]. Nevertheless, a generatively
trained classifier, such as naive Bayes, still enjoys several advan-
tages in practice. For example, the learning procedure is usually
very simple and efficient and several techniques can improve its
performance and make it very competitive when compared with lo-
gistic regression (e.g., [27, 19]). When the size of the training data
is small, naive Bayes can even outperform logistic regression, re-
gardless of whether its strong conditional independence assumption
holds or not. This is due to the fact that naive Bayes can converge to
its asymptotic accuracy (i.e., the model trained on infinitely number
of examples) much faster than logistic regression [24].

In this paper, we introduce a novel learning method, partitioned
logistic regression (PLR), which is a hybrid model that can be
viewed as part generative and part discriminative. Given training
examples, the PLR approach first separates the feature space into
k disjoint subsets of features, which are assumed conditionally in-
dependent given the class label. Correspondingly, k different mod-
els are trained discriminatively using logistic regression on these
subsets of features only. The final prediction is based on the mul-
tiplication of the posterior probabilities estimated by these k indi-
vidual models, following the conditional independence assumption
assumed by the naive Bayes model.

Because the PLR model only assumes that the features of differ-
ent groups are conditionally independent, but not features within
the same group, it outperforms naive Bayes in our experiments on
both synthetic and real datasets. Perhaps more surprisingly, we also
found that the PLR model outperforms its discriminative counter-
part, logistic regression, even when the conditional independence
assumption does not hold. We provide theoretical evidence that
suggests why this can happen and provide a set of experiments on
synthetic data to illustrate the effectiveness of the PLR model. Fur-
thermore, we demonstrate that, when applied to a large real dataset
from the email spam filtering domain, the PLR model significantly
outperforms both logistic regression and naive Bayes.

Improved prediction accuracy is not the only advantage of the
PLR model. The model is especially suitable for real-world appli-
cations. The linear functional form of partitioned logistic regres-
sion is fast and easy to implement. Many production systems use
models of this form, which means that a PLR model could poten-
tially be easily adapted for use in these systems. In fact, typically
the only change needed is to replace the weights with those learned
using partitioned logistic regression. Having the features separated
into several groups enables one to easily tune smoothing parame-
ters for different groups of features. As we will demonstrate, this
can lead to further significant performance enhancements. Another
advantage of partitioned logistic regression is its ability to incor-
porate multiple information sources together. This property is es-



pecially important when we apply the PLR model to the task of
spam filtering. Although traditionally spam filtering is treated as a
special problem of text classification, using only the email content
information often provides unsatisfactory results. This is mainly
due to the fact that spam is an adversarial problem and spammers
can easily manipulate messages by adding “good words” to fool the
content-based spam filter [22, 21]. In this paper, we also demon-
strate how the PLR model can easily incorporate information such
as sender reputation and user preference in a highly scalable way
to enhance the performance of a spam filter.

The rest of the paper is organized as follows. We first describe
our partitioned logistic regression model in Sec. 2. Theoretical
analysis and experiments on synthetical data are presented in Sec. 3
and 4 respectively, which explains why the PLR model can perform
better than both naive Bayes and logistic regression. We then depict
how we use our model in the task of email spam filtering, with the
focus on how it combines several sources of important information,
and show the experiments in Sec. 5 and 6. In addition, methods of
modeling user preference given only partial information are inves-
tigated in Sec. 7. Finally, we describe some related work in Sec. 8
and conclude the paper in Sec. 9.

2. PARTITIONED LOGISTIC REGRESSION
Conceptually, our partitioned logistic regression (PLR) model

can be defined as a set of classifiers that are trained by logistic re-
gression using the same examples, but on different partitions of the
feature space. Given a testing example, posterior probabilities are
first estimated by these classifiers and the product of these values
are then used to make the final prediction. Although it can be easily
extended to multi-class problems, to simplify the presentation, we
focus on the binary case. Formally, let Y ∈ {0, 1} be the label of
an example X ∈ Rn that consists of n features. Assume the fea-
ture space can be separated into k disjoint sets according to a pre-
defined partitioning. Namely, X = (x1

1, · · · , x1
n1

, x2
1, · · · , x2

n2
,

· · · , xk
1 , · · · , xk

nk
), where for the j-th group, xj

i is its i-th feature
and nj is the number of features in this group. The total number of
features in this example is thus the same as the sum of the numbers
of features in these groups. That is, n =

Pk

j=1 nj . Let Xj be the
sub-vector that consists of the j-th group of features. The origi-
nal example can be represented as X = X1,X2, · · · ,Xk. During
training, k linear models are learned using logistic regression on the
same training examples, but each model learns on its corresponding
set of features. We denote the weights and the bias term of the j-th
model as Wj and bj , and the posterior estimated by this individual
model is:

P̂ (Y = 1|Xj) =
exp(Wj · Xj + bj)

1 + exp(Wj · Xj + bj)

Let ôj = P̂ (Y = 1|Xj)/P̂ (Y = 0|Xj) be the posterior odds esti-
mated by the j-th model, ô = P̂ (Y = 1)/P̂ (Y = 0) the estimated
prior odds, which can be derived using the empirical class distribu-
tion in the training data. Given a testing example X, the estimated
posterior odds is defined as:

P̂ (Y = 1|X)

P̂ (Y = 0|X)
≡ ô(1−k) ·

k
Y

j=1

ôj (1)

The label of this example is predicted as 1 when the value of Eq. 1
is larger than 1, and 0 otherwise. When this function is used for
ranking, the term ô(1−k) can be ignored since it is a constant that
does not change as the testing example changes.

Although it may not seem obvious, the PLR model can be viewed
as a set of individual logistic regression models, combined follow-

Figure 1: Features of different groups (X1,X2, · · · ,Xk) are
assumed conditionally independent given the class label Y

ing the naive Bayes principle. In other words, the groups of fea-
tures are assumed conditionally independent given the class label,
and can be described as Eq. 2.

P (X|Y ) = P (X1,X2, · · · ,Xk|Y ) =

k
Y

j=1

P (Xj |Y ) (2)

When the estimated odds and posteriors are correct, it can be
shown that Eq. 1 is indeed the true posterior odds when this as-
sumption holds. Let o be P (Y =1)

P (Y =0)
and oj be P (Y =1|Xj)

P (Y =0|Xj)
.

P (Y = 1|X)

P (Y = 0|X)
=

P (Y = 1)P (X|Y = 1)

P (Y = 0)P (X|Y = 0)

= o ·

Qk

j=1 P (Xj |Y = 1)
Qk

j=1 P (Xj |Y = 0)

= o ·

k
Y

j=1

P (Y = 0)

P (Y = 1)
·
P (Y = 1|Xj)P (Xj)

P (Y = 0|Xj)P (Xj)

= o(1−k) ·

k
Y

j=1

oj (3)

Note that Eq. 2 is different from the conditional independence as-
sumption in the naive Bayes classifier. Here only features of differ-
ent groups are conditional independent, but not the features within
the same group. The relationships among these features can be rep-
resented by Fig. 1.

Although the PLR model consists of k logistic regression mod-
els, in practice, it is very easy to replace a regular logistic regression
model trained on all features with the PLR model, due to their iden-
tical functional form. This property is especially clear through the
log-odds function, which is the weighted sum in logistic regression.

l̂o(X) = log

 

ô(1−k) ·
k
Y

j=1

ôj

!

= (1 − k) log ô +

k
X

j=1

log ôj

= (1 − k) log ô +

k
X

j=1

(Wj · Xj + bj)

=

 

k
X

j=1

Wj · Xj

!

+

 

(1 − k) log ô +

k
X

j=1

bj

!

(4)

In other words, the weights learned by k different models can be
used directly as the weights of a global logistic function, and the
new bias term is (1 − k) log ô, plus the sum of all individual bias
terms.



The set of partitioned logistic regression models represents a
spectrum of models with naive Bayes at one end and logistic regres-
sion at the other. For example, when k = 1, the PLR model reduces
to the regular logistic regression model. On the other hand, when
k = n, the model is equivalent to naive Bayes modulo smooth-
ing; each component logistic regression model learns the empirical
posterior probability for one feature.

The PLR model enjoys several advantages over both naive Bayes
and logistic regression. Although naive Bayes is a very efficient
learning algorithm and has shown good performance in many ap-
plications, its main weakness is the strong independence assump-
tion that seldom holds in reality. In contrast, the PLR model pro-
vides a principled way to control the degree of feature dependence.
Features within the same group are not assumed conditionally in-
dependent given the class label and can be modeled better by lo-
gistic regression. More interestingly, the PLR model can also be
better than the regular logistic regression model. It has been argued
that with enough examples, a discriminative model such as logistic
regression can achieve equal or better performance than its gener-
ative counterpart (i.e., naive Bayes) asymptotically [24]. However,
as we will show in Sec. 3, under some circumstances partitioned
logistic regression can in fact learn a better model with fewer train-
ing examples. Partitioned logistic regression also has an additional
advantage that is crucial in practice – allowing tuning the smooth-
ing priors more easily. As will be demonstrated in Sec. 6, the PLR
model with the same prior for all the weights already outperforms
the regular linear regression model, but by allowing different priors
for individual logistic regression models, the performance improve-
ment can be further increased.

3. THEORETIC ANALYSIS
When the conditional independence assumption holds, following

the same argument used in [9], one can show that asymptotically
(i.e., with infinitely many training examples) the PLR model per-
forms no worse than the LR model. However, when this assump-
tion does not hold, a discriminative classifier outperforms its gener-
ative counterpart asymptotically, as long as its hypothesis space has
finite VC dimension [32]. Intuitively, this is because the true dis-
criminate learning algorithm has the freedom to search the whole
weight space while the generative model limits the possible weights
due to some assumption about the data. Although partitioned logis-
tic regression has a weaker conditional independence assumption as
compared to naive Bayes, it does indeed limit its flexibility to learn
the model parameters.

Inspired by [24], we argue that even though PLR may learn a
worse model asymptotically, it converges faster than logistic regres-
sion as the number of training examples increases. We first present
a straightforward result of applying Vapnik’s uniform convergence
bounds [32] to logistic regression.

Theorem 1 ([24]) Let hDis be logistic regression learning an n-
dimensional weight vector. Then with high probability

ε(hDis) ≤ ε(hDis,∞) + O(

r

n

m
log

m

n
),

where m is the number of training examples, ε(hDis) is the error
of the learned model and ε(hDis,∞) is the asymptotic error.

Theorem 1 states that the sample complexity of discriminative
learning (the number of examples needed to approach the asymp-
totic error) is at most on the order of n, which is the VC dimen-
sion of the logistic regression model. It also implies that when the
weight space of the logistic regression learner is smaller, it requires

fewer examples to approach its asymptotic error. Consider a com-
ponent logistic regression learner and a global logistic regression
learner. The former sees only the nj features of each example and
learns nj +1 weights, while the latter is given the whole n features
and learns the n + 1 weights. Suppose the number of features used
in each component logistic regression model is the same. With k
components, nj = n/k, which indicates each local model only
needs O(n/k) examples to converge, while the regular logistic re-
gression needs O(n) examples.

In practice, the size of the training data is often insufficient for
the learner to achieve the optimal error rate, especially when the
feature space is large. Being able to converge faster explains why
the PLR model may still outperform regular logistic regression,
even when the conditional independence assumption (Eq. 2) does
not hold.

4. EXPERIMENTS ON ARTIFICIAL DATA
In order to demonstrate the effectiveness of partitioned logistic

regression, we show empirically that the PLR model can outper-
form regular logistic regression (LR), using several artificial datasets.
In particular, we verify two claims in this section. First, if the
examples are generated from a distribution where the conditional
independence assumption (Eq. 2) holds, PLR indeed outperforms
LR. Second, even when the conditional independence assumption
does not hold, PLR can still be better than LR, especially when the
number of training examples is small.

4.1 Data Generation
Let Y ∈ {0, 1} be the class label of an example X, which con-

sists of two groups of d binary features X1 and X2. We generate
this labeled example using the following procedure:

Y ∼ Bernoulli(0.5)

X̂ = (X̂1, X̂2) ∼ N(uy, Σy)

X = (X1,X2) = (ϕ(X̂1), ϕ(X̂2)), (5)

where N(uy, Σy) is a multivariate normal distribution for a given
Y ∗. Vector X̂ is a real-valued vector which can be decomposed
to (X̂1, X̂2). ϕ(.) is a deterministic function that converts a real-
valued vector R = (R1, R2, · · · , Rd) to a binary vector. Each ele-
ment Rj is first transferred to the corresponding base-2 representa-
tion. The sign bit and the bits that correspond to 22, 21, 20, 2−1, 2−2

form the binary sub-vector for this element. Therefore, the length
of the final binary vector is 6d.

We generate the covariance matrix Σy , which needs to be sym-
metric and positive semi-definite, in the following way. A 2d × 2d
Gram matrix is first created using 2d randomly generated vectors†,
which can be re-written as:

M =

»

A B
BT C

–

,

where A, B and C are d× d matrices. We then introduce a param-
eter α to create a different matrix M ′ and use it as the covariance
matrix Σy , where

M ′ =

»

A αB
αBT C

–

. (6)

∗To simplify the notation, we assume the multivariate normal dis-
tribution generates row vectors directly. Let e be a vector of d ones.
We set uy = e

p

0.5/d when y = 1 and −e
p

0.5/d otherwise.
†The Gram matrix is all possible inner products of the given vec-
tors, and is therefore symmetric and positive semi-definite.
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Figure 2: The performance of three methods in accuracy us-
ing different numbers of training examples. The two feature
groups are conditionally independent in this synthetic data.

Note that M ′ is also positive semi-definite when 0 ≤ α ≤ 1, and
therefore is a valid covariance matrix.

Notice that our covariance matrix construction is equivalent to
setting cov(X̂1, X̂1|Y ), cov(X̂1, X̂2|Y ) and cov(X̂2, X̂2|Y ) as
A, αB and C, respectively. Therefore, we can use the parameter α
to control the “degree” of independence of X1 and X2 given Y . In
particular, they are conditionally independent when α = 0, but not
when α > 0. When α = 1, they are closely related.

By fixing d to 20 (i.e., 240 binary features) and varying the pa-
rameter α, we generate several synthetic datasets for experiments.
Each dataset is further split for training and testing. While the num-
ber of training examples may vary, we fix the number of testing ex-
amples to 2,500. The averaged accuracy of 100 rounds is reported
for each configuration.

4.2 Results
We first verify the case when the conditional independence as-

sumption holds. By setting α to zero, feature groups X1 and X2

are conditionally independent given Y . However, features in the
same group (either X1 or X2) are not independent since the co-
variance matrices that decide X1 and X2 are not diagonal matrices
(see Eq. 6). Fig. 2 compares the performance in terms of accuracy
of three different methods, naive Bayes (NB), logistic regression
(LR) and partitioned logistic regression (PLR), when given differ-
ent sizes of training data. As shown in the figure, when the number
of training examples is small (e.g., 500), NB is better than LR.
However, LR quickly outperforms NB when there is more training
data and the performance gap increases as the size of training data
grows. In contrast, PLR is better than both NB and LR in all these
experiments, which is consistent to what we expected. Notice that
all the comparisons here are statistically significant‡.

It is interesting to know whether PLR can still perform well when
the groups of features are not conditionally independent. For this
set of experiments, we vary the parameter α from 0 to 1 and gener-
ate two different sets of data. One of them contains 500 training ex-
amples and the other has 2,500 training examples. Fig. 3 shows the
results of LR and PLR. Although it is expected that PLR is better
than LR when α = 0 (i.e., the conditional independence assump-
tion holds), it is somewhat surprising to see that PLR still outper-
‡We conduct a paired-t test when comparing two learning methods
using the same training and testing data. The difference is consid-
ered statistically significant when the p-value is less than 0.05.
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Figure 3: The performance of LR and PLR using different sizes
of training data. Whether the groups of features are condition-
ally independent is controlled by the parameter α.

forms LR in many cases, especially when number of the training
examples is small. This implies that LR may need more training
examples to achieve its asymptotic performance compared to PLR.
Note that all the comparisons are statistically significant except the
difference between LR and PLR when α = 0.8 and the number of
training examples is 2,500.

5. EMAIL SPAM FILTERING
Although we have shown theoretically and experimentally (on

synthetic datasets) that partitioned logistic regression can perform
better than both logistic regression and naive Bayes, it is more im-
portant to examine how effective this model is for a real-world ap-
plication, such as email spam filtering.

Spam filtering is a problem of classifying incoming messages
to either spam or good, and has usually been treated as a binary
text classification problem. The approach of building a spam filter
as a classifier trained by machine learning algorithms (e.g., naive
Bayes) using words or tokens in email as features, has been advo-
cated for a decade [28]. Although various feature engineering and
sophisticated learning algorithms have been proposed (e.g., [33, 19,
14]), the view that a spam filter is a special text classifier has not
been changed much, and a content-based filter is still the core com-
ponent in many commercial email spam filtering systems.

Unfortunately, due to the adversarial nature of the spam problem,
a content-based filter is usually quite vulnerable and needs to be re-
trained frequently to defend new spam attacks. By adding words
that are often seen in normal messages, spammers can manipulate
the content of an spam message and fool a content-based filter eas-
ily [22, 21]. Because of this weakness, researchers have started to
treat this problem as a more general classification problem and ex-
plored other types of information instead of just the content. One
recent example is the use of sender information [20]. Intuitively,
if an IP address never sent spam messages in the past, the sender
behind this IP is unlikely to be a spammer. In contrast, messages
sent from IPs of bad reputation can be predicted as spam with high
accuracy, even without checking the content of the messages. Com-
pared to the content features, the IP address of the email sender is
harder to spoof, which makes it a more reliable information source.

In addition to sender reputation, the recipient information can
also help spam filtering. It is often assumed (at least implicitly)
that there is a clear distinction on whether an email message is
spam or good to a human subject. In practice, however, this as-



sumption does not always hold. For example, when receiving unso-
licited commercial email, two-thirds of users consider it as a good
message as long as they have done business with the sender [11].
Messages belonging to this category are called “gray mail”, which
could reasonably be considered either spam or good [34]. The la-
bel of this type of mail depends on the individual user preference.
After all, even the exact same message can be labeled differently
when it is sent to different users. For a spam filter to classify it
accurately, the user preference needs to be considered.

To build a robust spam filter, it is thus preferable to incorporate
all the aforementioned information: content, sender reputation and
user preference. While the natural choice is to extract features from
each of these three information sources and build a classifier that
learns on all features, as we will show in Sec. 6, a PLR model that
treats these groups of features separately in fact performs better.
In practice, a spam filter trained using labeled messages from one
group of users often needs to be applied to messages sent to other
users as well. With limited feedback from previously unseen users,
how to adjust the filter to handle their user preferences is not trivial.
In Sec. 7, we will further investigate this issue and demonstrate that
the PLR model can easily incorporate partial information of user
preference and still improve the filter.

6. EXPERIMENTS
We compare the PLR model with logistic regression and naive

Bayes experimentally on the application of email spam filtering in
this section. We first describe the basic setting of our experiments,
followed by the results of various configurations in different evalu-
ation metrics.

6.1 Experimental Setting
To compare the PLR model with other models, we conduct sev-

eral experiments on three email datasets for spam filtering. The
first one is a non-public Hotmail dataset that has been used previ-
ously [33, 19]. The other two are the 2005 and 2006 TREC Spam
Filtering Track datasets [6, 5], which have also been used in previ-
ous works (e.g., [19]).

The Hotmail corpus is collected by polling Hotmail volunteers
daily. The system randomly picks messages sent to voluntary users
and asks them to label the messages as good or spam. Because the
labels are given by the recipients, identical messages that are sent
to different users may be labeled differently, according to their own
preferences. Therefore, knowing the recipient of the email message
can potentially increase the performance of the spam filter.

We use the same Hotmail collection as used in [33] for exper-
iments. The training set contains 765,000 messages received be-
tween July-01-2005 and Nov-30-2005. The remaining messages
are split into validation and testing sets. The former consists of
30,000 messages received between Dec-01-2005 and Dec-03-2005;
the latter has 120,000 messages received between Dec-04-2005 and
Dec-15-2005. The features used in our system are as follows. The
content features are composed of the words in the subject and body
that have occurred at least three times in the training set – whether a
word occurs in the message is used as a binary feature. The number
of content features is therefore decided by the size of the vocabu-
lary. The sender features are determined by the the IP address of
the sender, which include the first 16 bits, the first 24 bits and the
whole IP address. Finally, the user features are the recipient ids.

Other than the Hotmail data, we also use the TREC corpora,
which consists of chronologically ordered email messages. De-
spite the fact that the TREC corpora are arguably the largest pub-
licly available email datasets for spam filtering, their sizes are still
much smaller compared to the Hotmail collection. Following a

similar setting in [19], for the TREC-05 corpus, we use the first
30,726 messages for training, the subsequent 10,242 messages for
validation, and the remaining 51,213 messages for testing. For the
TREC-06 English corpus, the initial portion of 12,606 messages are
used for training. The first 4,202 messages in the remaining portion
are used for validation and the rest for testing. Although the mes-
sages in these corpora are real email, the way they are collected is
somewhat artificial. Because private messages cannot be included,
the TREC-05 corpus is a combination of Enron corpus and Spa-
mAssassin corpus, and the messages in TREC-06 corpus are email
crawled from the Web. In both corpora, the message labels are not
given by the original mail recipients, but instead given by human
annotators and some spam filters. Therefore, the user preference
information is not preserved. As a result, for the experiments on
the TREC corpora, only content and sender features are used and
they are extracted in the same way as in the Hotmail dataset.

We show the results of four different learning methods on these
three datasets. They are naive Bayes (NB), regular logistic regres-
sion (LR), partitioned logistic regression with the same smoothing
prior for all feature groups (PLR) and partitioned logistic regres-
sion with different smoothing priors for different groups of fea-
tures (PLR+)§. For naive Bayes, we use the regular multivariate
Bernoulli model with Laplace smoothing (add-one smoothing). For
the logistic regression components in LR, PLR and PLR+, we used
SCGIS [12] as the actual training method. However, because the
solution space is convex and has a global optimum, the choice of
training algorithm makes relatively little difference. On the other
hand, setting the right smoothing parameter (i.e., the variance of the
Gaussian prior) is crucial for good empirical performance. There-
fore, for each set of the experiments, we tested it with values among
{0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30} and selected the best
one according to the results on the validation set. The results of
these models on the testing set are reported.

Although spam filtering is a binary classification problem, the
accuracy of the filter at the 50-50 decision point is usually not
a good performance metric¶. Because the cost of losing good
mail (false-positive) is much higher than receiving spam (false-
negative), we present the ROC curves of different models in the
low false-positive region, which is a typical method for evaluating
spam filters. In addition, we also report two measures that probe
the quality of the filters in this region. The first is the normal-
ized AUC score [19], which is essentially the area under the ROC
curve in the low false-positive region. Assume t is the target false-
positive rate (FPR). The normalized AUC (denoted as AUCt) is
the area in the section of the ROC curve, {(FPR, TPR) : 0 ≤
FPR ≤ t, 0 ≤ TPR ≤ 1}, divided by t. The second measure
is the true-positive rate of the filter at a specific false-positive rate
t (denoted as TPR@FPR=t), which is a point on the ROC curve.
When comparing methods on TPR@FPR=t, we use McNemar’s
test [7] on the classification results of two compared methods at
their decision thresholds that correspond to the false-positive rate
t. The difference between two methods is considered statistically
significant when the p-value of the test is less than 0.05.

6.2 Results
We first show the ROC curves of different methods on the Hot-

§Note that for PLR+, we use the validation set to select the best
smoothing parameter for each component logistic regression model
independently, instead of trying all the combinations of parameters.
¶The differences in accuracy between various models on the email
datasets are in fact consistent with what we observed in the exper-
iments on synthetic datasets (Sec. 4). However, since accuracy is
not the right measure for spam filtering, we choose not to report it.



measure AUC0.1 TPR@FPR=0.1
learning algorithms NB LR PLR PLR+ NB LR PLR PLR+
content 0.459 0.512 - - 0.651 0.722 - -
content, user 0.466 0.474 0.516 0.555 0.658 0.704 0.723 0.753
content, sender 0.495 0.536 0.575 0.608 0.687 0.762 0.837 0.864
content, sender, user 0.500 0.521 0.588 0.644 0.691 0.766 0.825 0.873

Table 1: AUC0.1 and TPR@FPR=0.1 of NB, LR, PLR and PLR+ when using different feature groups on the Hotmail dataset.

Dataset measure AUC0.01 TPR@FPR=0.01
learning algorithms NB LR PLR PLR+ NB LR PLR PLR+

TREC 05 content 0.520 0.843 - - 0.626 0.919 - -
content, sender 0.536 0.850 0.878 0.878 0.643 0.948 0.951 0.962

TREC 06 content 0.399 0.759 - - 0.506 0.928 - -
content, sender 0.406 0.785 0.858 0.875 0.514 0.928 0.944 0.943

Table 2: AUC0.01 and TPR@FPR=0.01 of NB, LR, PLR and PLR+ when using different feature groups on the TREC datasets.
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Figure 4: The ROC curves for the Hotmail dataset. Symbol c
means only content features are used, and all means all three
types of features are used.

mail dataset in Fig. 4, focusing on the low false-positive region.
To make the presentation clear, we only show the results when all
the feature groups are used, as well as the result of a logistic re-
gression model that is trained using content features only. As we
can see in the figure, adding other non-content features does im-
prove the filter. When comparing two logistic regression models,
LR.c versus LR.all, the latter is consistently better in most of the
region, and these two curves cross at around 0.05 false-positive
rate. Learning on all the features together in a single logistic re-
gression model, however, is not the best way to use non-content
information. When comparing LR.all and PLR.all, the PLR model
achieves 0.1 higher true-positive rate than the logistic regression
model consistently throughout the region. More encouragingly, by
finding the best smoothing parameter for each of the individual lo-
gistic regression components independently, the performance gap
does increase quite substantially. This result can be clearly seen
when we compare the curves of PLR+.all versus LR.all. Finally,
naive Bayes seems to perform worse than logistic regression on
this dataset. Even when trained on all features, it is still not as good
as the logistic regression model trained on content features only.

We further investigated the impact of adding different groups of
features in different learning methods. Tab. 1 shows the results
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Figure 5: The ROC curves of four learning methods using both
content and sender features on the TREC-06 datasets.

in AUC0.1 and TPR@FPR=0.1. The first column lists the feature
groups used in the experiments and other columns present the re-
sults of different methods. Since the PLR model is equivalent to the
regular logistic regression model when only the content features are
used, we leave the corresponding results of PLR and PLR+ empty
in the table. Generally speaking, adding new groups of features
tend to increase the performance for all the methods we tested.
However, given the same groups of features, PLR is consistently
better than LR. In addition, by allowing different smoothing param-
eters for individual component logistic regression models, PLR+ is
again better than PLR in both quality measures. In contrast, naive
Bayes is inferior to any other methods, which is consistent to what
we have observed in Fig. 4. Notice that because the number of test-
ing examples is quite large (i.e., 12,000), the differences between
any two methods when using the same sets of features are statis-
tically significant for the true positive-rate measure. Similarly, the
differences between any two sets of features when used by the same
model are also statistically significant.

The experimental results on the TREC datasets also lead to sim-
ilar conclusions. For example, Fig. 5 shows the ROC curves of
four different methods using both content and sender features on
the TREC-06 dataset. Because this dataset is much easier than the
Hotmail data as previously discovered, we focus on a lower false-



positive region. Although the performance gaps are much smaller
here, we can still see that PLR+ is slightly better than PLR, which
is again better than the logistic regression model. Naive Bayes is
still inferior to other methods on this dataset. Tab. 2 shows the
results of using different feature group combinations and different
learning methods in AUC0.01 and TPR@FPR=0.01. As indicated
by the results, we can see that using both sender and content fea-
tures is indeed better than using only the content features in most of
the cases. Moreover, PLR is able to use the additional sender fea-
tures more effectively and performs better than LR on both TREC
datasets. The performance difference between PLR and PLR+ on
the TREC datasets is much smaller.

The improvement of choosing different smoothing parameters
(i.e., PLR+ vs. PLR) is relatively smaller compared to what we
previously observed in the Hotmail dataset. In addition, PLR+ is
better than PLR in only TPR@FPR=0.01 on the TREC-05 data, and
only in AUC0.01 on the TREC-06 data. Notice that on the TREC-06
data, the differences in TPR@FPR=0.01 between PLR and PLR+,
and two LR models using different features are not statistically sig-
nificant. All other comparisons in TPR@FPR=0.01 between dif-
ferent methods using the same sets of features, or the same method
learned on different sets of features, are statistically significant.

7. HANDLE USER INFORMATION
Although in Sec. 6, we have observed that including user infor-

mation in the model can improve spam filtering (e.g., Tab. 1 and
Fig. 4), such information is not always available. As discussed
earlier, a spam filter is often trained using data collected from one
group of users but may need to be applied to messages sent to oth-
ers. It is thus interesting to explore how we can still extend the user
model in various realistic settings.

In this section, we first revisit how we incorporate user features
in our PLR model and suggest alternative learning methods. We
next study experimentally two different scenarios when the user
information is limited and demonstrate how a modified user model
can still help to improve the PLR model.

7.1 User Model
Recall that the features extracted from user information in Sec. 6

are merely the ids of the email recipients. When incorporating this
information in the PLR model, the corresponding component logis-
tic regression model estimates P (Y |Xu) of each testing message,
where Xu is the group of user features of that particular example.
Because only one of the binary features that represents the message
recipient is active, this model basically predicts how likely a mes-
sage received by this user is spam, without knowing any content or
sender information regarding the message.

Although this user model can be learned using logistic regres-
sion as usual, it is not hard to show that without regularization and
the bias term, the estimation of P (Y |Xu) can be derived using
frequency counting directly:

P̂ (Y = 1|Xu) =
#count(Y = 1, u)

#count(u)
, (7)

where #count(Y = 1, u) and #count(u) are the numbers of spam
messages and all messages user u receives, respectively. Eq. 7 pro-
vides us a more straightforward method to build the user model. As
we will see later, by augmenting different smoothing techniques,
Eq. 7 can easily be revised to handle incomplete information of
user preference.

7.2 Scenarios of Partial User Information
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Figure 6: The results of three models by varying the amount of
training data from user group 2.

In order to create scenarios where user information is limited, we
split the training and testing data of the Hotmail collection in the
following way. We first randomly divide all the email recipients
into two user groups of roughly the same size. Messages in the
original training set sent to these two groups of users are denoted
as U1 and U2 respectively, where U1 contains 381,091 messages
and U2 has 383,909 messages. For the experiments in this sec-
tion, the training data includes all messages in U1 and zero or some
messages in U2. For testing, only the email in the original test set
sent to the recipients in user group 2 is retained, which consists of
45,092 messages in total. To simplify the tests, we use only content
features and user features.

The first scenario we test is when fewer messages in U2 are avail-
able for training. We generate different sets of training data by
adding all the U1 messages, along with randomly selected portions
of U2 messages in various sizes. Besides the LR and PLR+ model
as described in the previous section, we also test a new model,
PLR+mixed. This model is similar to PLR+, but its content-based
component model is trained using only messages in U1, while its
user-based component model is trained using all the given train-
ing messages. In other words, the PLR+mixed model can estimate
P̂ (Y = 1|Xu) for group 2 users using the limited training data,
but does not have access of the email content. Since PLR+mixed

uses the same learning method but is given less information, its
performance should be bounded by what PLR+ can achieve.

Fig. 6 shows the performance in terms of normalized AUC at
0.1 false-positive rate of these three different models in this setting.
When there is no training message from U2, three models reduce to
the same logistic regression model that only uses content features
from messages in U1. However, when more messages from U2

are added for training, the regular logistic regression model can
only gain limited improvement in AUC0.1, compared to the PLR+
model. Perhaps more interestingly, the performance gap between
PLR+ and PLR+mixed tends to be small, which suggests that the
improvement of the PLR model mainly comes from the additional
user information instead of the email content of messages in U2.

The second scenario assumes that the training data consists of
all U1 and U2 messages, but all the messages from U2 are unla-
beled. An interesting question here is whether we can apply the
“bootstrapping” technique in semi-supervised learning to “guess”
the labels of these unlabeled messages from U2, and use them to
derive the corresponding user model. Suppose P̂c is the content-
based model trained using messages from U1, mu is the subset of



unlabeled messages in U2 that are sent to a specific user u, and
Xc(i) represents the content features of the message i. We use the
following formula to predict how likely a message sent to user u is
spam.

P̃ (Y = 1|Xu) =

P

i∈mu
P̂c(Y = 1|Xc(i)) + βP (Y = 1)

|mu| + β
,

(8)
where β is the smoothing parameter.

Eq. 8 can be viewed as an enhanced version of Eq. 7. It uses a
content-based model to derive the expected number of spam mes-
sages received by this user, and estimates the ratio of the number
of spam messages to the number of total messages, with Dirichlet
smoothing. Recall that when there is no message from U2 in the
training set, the AUC0.1 score is 0.540 as indicated in Fig. 6. How-
ever, by including the user model provided by Eq. 8 with β = 5.0
(tuned using the validation set) in the PLR+ model, the AUC0.1

score is increased to 0.566. From Fig. 6, we can see that this has
the same effect as including nearly 20% of the labeled messages
from U2 for training.

Notice that Eq. 8 is just one baseline method to derive the user
model when the labeled data from the specific user is unavailable.
In practice, there could be better sources to collect information of
user preference. For example, most modern email systems provide
various mechanisms for users to report junk mail. By using the
count of junk mail, we can estimate the number of spam messages
received by this user more robustly to further improve the results.

8. RELATED WORK
Our PLR models can be viewed as a spectrum of hybrid gen-

erative/discriminative models that range between naive Bayes and
logistic regression. Furthermore, every model in this family has
the same linear functional form. Ng and Jordan [24] analyzed
logistic regression and naive Bayes theoretically and concluded
that although not performing better than logistic regression with
enough training data, naive Bayes needs much fewer examples (i.e.,
O(log(n)) vs. O(n), where n is the dimensionality of the weight
space) to approach its asymptotic performance. Following the same
arguments, the PLR model may also converge to its asymptotic
result faster than regular logistic regression, although the perfor-
mance could be suboptimal compared to what logistic regression
can potentially achieve.

An alternative hybrid model was proposed by Raina et al. [26]
who learn component naive Bayes classifiers first and then com-
bine them using the weights learned by logistic regression with
leave-one-out estimate. They demonstrated that by separating fea-
tures that obviously violate the conditional independence assump-
tion into different groups, their hybrid model can outperform naive
Bayes, but is still inferior to logistic regression on most of the
benchmark datasets. Their model can be treated as a way to im-
prove naive Bayes by slightly relaxing the conditional indepen-
dence assumption, which can be analogous to several previous ef-
forts on enhancing the prediction accuracy of naive Bayes (e.g., [2,
27, 19]). In contrast, our PLR model applies the naive Bayes as-
sumption to combine multiple logistic regression models. It is
not only better than naive Bayes, but also somewhat unexpectedly
outperforms logistic regression on a real-world application, email
spam filtering, on a very large dataset. The good empirical perfor-
mance of the PLR model may also be explained following the same
argument suggested by Domingos and Pazzani [9], where they ar-
gued that naive Bayes can be optimal under 0-1 loss in several
learning problems which do not satisfy the conditional indepen-
dence assumption.

The PLR model can also be viewed as a special form of model
combination, where multiple classifiers are learned through either
different learning algorithms or different samples of the training
data and the final prediction is made by the combined results. There
exists a considerable amount of literature on this topic and inter-
ested readers can find a survey in, e.g., [18, 8, 3]. In the model
combination paradigm, partitioned logistic regression can be cate-
gorized as a model of logarithmic opinion pools in Hinton’s prod-
ucts of experts framework [16], where the final prediction is made
by averaging the estimated log-odds of individual classifiers (i.e.,
experts). Following the same naive Bayes assumption, Kahn pro-
posed an improved version of the logarithmic opinion pools by cal-
ibrating the probability estimation of the experts and also learn-
ing the combining weights discriminatively [17]. Compared to the
general model combination framework, the main difference in par-
titioned logistic regression is that the individual models or experts
are learned specifically on disjoint feature spaces. The overall func-
tional form is exactly the same as learning a logistic regression
model on all the features. The prediction function does not need
to be changed at all, only the weights and the bias term are set dif-
ferently. These properties make our PLR model very easy to use in
reality when a linear classifier has been implemented and used.

As for the application of spam filtering, statistical approaches
have been claimed more effective than rule-based systems and have
been used extensively [1]. Linear classifiers, such as naive Bayes [28,
23], logistic regression [13, 33] and linear SVMs [10, 30], are espe-
cially popular for this task due to their ability to handle large fea-
ture spaces efficiently. Various model combination methods have
also been explored. For example, Hershkop and Stolfo [15] ex-
perimented with different model combination strategies for models
trained using different algorithms and on different features. More
traditional ensemble-like methods such as a cascade of classifiers [33]
and stacking classifiers [29] have also been applied to spam filter-
ing. Most work on spam filtering treats it as a regular text classifi-
cation problem. The use of non-content information has been less
studied. Using the sender information (i.e., the IP address sending
the mail) is first studied in [20], which analyzes the whole SMTP
path and uses it to enhance the filter.

Personalized email spam filtering has typically been viewed as
training a model that fits better individual user’s mail distribution,
instead of adjusting the filter to learn user preference. For example,
Bickel and Scheffer [4] use a Dirichlet process model to re-sample
the training data for each user and to make the distribution of this
new training dataset close to the messages this user receives. How-
ever, this strategy is quite expensive in computation and may not be
feasible for a Web mail system that has hundreds of millions user
accounts. Instead of creating new training data, Segal [31] pro-
posed a method to combine a globally trained model with a model
trained using only personal email. While the globally trained spam
filter always outperforms the locally trained one, the combined ap-
proach still gains some improvement. Notice that in both cases, the
class label of an email message is assumed to be independent of
the recipient of the mail. In other words, the user preference issue
of the gray mail problem described previously is not handled by
either of these approaches. In comparison, our personalized spam
filtering system using the PLR model deploys a simple light-weight
user model, which is highly scalable for practical applications.

9. CONCLUSIONS
In this paper, we present partitioned logistic regression, which is

a novel hybrid model of the generative model, naive Bayes, and its
discriminative counterpart, logistic regression. By assuming that
features can be grouped into disjoint subsets that are conditionally



independent given the class label, individual models are learned by
logistic regression using only the corresponding subsets of features,
and combined following the naive Bayes principle. Our model not
only outperforms both naive Bayes and logistic regression in ex-
periments on synthetic and real data, but also enjoys several advan-
tages that make it a suitable learning method in practical applica-
tions. Its identical functional form makes it easy to be used. By
grouping potentially dependent features together, it is also easy to
incorporate different types of information and learn a good model
with fewer training examples – both are crucial in practice to im-
prove the performance of the final application.

We also demonstrate the superiority of our proposed model on
the task of email spam filtering. On a fairly large real data set, the
method can easily learn a model that combines the content infor-
mation and sender reputation, as well as the individual user prefer-
ence. Its performance in various evaluation metrics is better than
both naive Bayes and logistic regression when learning on the same
set of features. Moreover, by tuning the smoothing prior of each in-
dividual model, the performance gap can even be further increased.

Our work shows a promising direction for creating hybrid gen-
erative/discriminative models, and also raises several interesting
questions for future research. In particular, we would like to ex-
plore methods that can automatically group features, which would
reduce the burden of a domain expert to decide the best feature
grouping. In addition, we would also like to study whether the
individual models can be better combined to yield higher overall
accuracy.

10. ACKNOWLEDGMENTS
We thank Paul Bennet and Joshua Goodman for many helpful

discussions.

11. REFERENCES
[1] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, and C. D.

Spyropoulos. An experimental comparison of naive bayesian
and keyword-based anti-spam filtering with personal e-mail
messages. In SIGIR-2000, pages 160–167, 2000.

[2] P. N. Bennett. Using asymmetric distributions to improve
text classifier probability estimates. In SIGIR-2003, 2003.

[3] P. N. Bennett. Building Reliable Metaclassifiers for Text
Learning. PhD thesis, Carnegie Mellon University, 2006.

[4] S. Bickel and T. Scheffer. Dirichlet-enhanced spam filtering
based on biased samples. In Advances in Neural Information
Processing Systems 19 (NIPS-2006), pages 161–168. 2007.

[5] G. Cormack. TREC 2006 spam track overview. In
Proceedings of TREC-2006, 2006.

[6] G. Cormack and T. Lynam. TREC 2005 spam track
overview. In Proceedings of TREC-2005, 2005.

[7] T. G. Dietterich. Approximate statistical test for comparing
supervised classification learning algorithms. Neural
Computation, 10(7):1895–1923, 1998.

[8] T. G. Dietterich. Ensemble methods in machine learning.
Lecture Notes in Computer Science, 1857:1–15, 2000.

[9] P. Domingos and M. Pazzani. On the optimality of the simple
Bayesian classifier under zero-one loss. Machine Learning,
29(2-3):103–130, 1997.

[10] H. Drucker, D. Wu, and V. Vapnik. Support vector machines
for Spam categorization. IEEE Transactions on Neural
Networks, 10(5):1048–1054, 1999.

[11] D. Fallows. Spam: How it is hurting email and degrading life
on the Internet. Pew Internet and American Life Project,
October 2003.

[12] J. Goodman. Sequential conditional generalized iterative
scaling. In ACL-2001, pages 9–16, 2001.

[13] J. Goodman and W. Yih. Online discriminative spam filter
training. In CEAS-2006, 2006.

[14] J. He and B. Thiesson. Asymmetric gradient boosting with
application to spam filtering. In CEAS-2007, 2007.

[15] S. Hershkop and S. J. Stolfo. Combining email models for
false positive reduction. In KDD-2005, pages 98–107, 2005.

[16] G. Hinton. Products of experts. In Proc. of the 9th
International Conference on Artificial Neural Networks
(ICANN99), pages 1–6, 1999.

[17] J. M. Kahn. A generative bayesian model for aggregating
experts. In UAI, pages 301–308, 2004.

[18] J. Kittler, M. Hatef, R. P. Duin, and J. Matas. On combining
classifiers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(3):226–239, 1998.

[19] A. Kolcz and W. Yih. Raising the baseline for high-precision
text classifiers. In KDD-2007, 2007.

[20] B. Leiba, J. Ossher, V. T. Rajan, R. Segal, and M. N.
Wegman. SMTP path analysis. In CEAS-2005, 2005.

[21] D. Lowd and C. Meek. Adversarial learning. In KDD-2005,
pages 641–647, 2005.

[22] D. Lowd and C. Meek. Good word attacks on statistical spam
filters. In CEAS-2005, 2005.

[23] V. Metsis, V. Androutsopoulos, and G. Paliouras. Spam
filtering with naive Bayes – which naive Bayes? In
CEAS-2006, 2006.

[24] A. Ng and M. Jordan. On discriminative vs. generative
classifiers: A comparison of logistic regression and naive
bayes. In Proceedings of NIPS 14, 2002.

[25] K. Nigam, J. Lafferty, and A. McCallum. Using maximum
entropy for text classification. In IJCAI-99 Workshop on
Machine Learning for Information Filtering, 1999.

[26] R. Raina, Y. Shen, A. Ng, and A. McCallum. Classification
with hybrid generative/discriminative models. In
Proceedings of NIPS 16, 2004.

[27] J. Rennie, L. Shih, J. Teevan, and D. Karger. Tackling the
poor assumptions of naive Bayes text classifiers. In
ICML-2003, 2003.

[28] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A
Bayesian approach to filtering junk e-mail. In AAAI-98
Workshop on Learning for Text Categorization, 1998.

[29] G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis,
C. D. Spyropoulos, and P. Stamatopoulos. Stacking
classifiers for anti-spam filtering of e-mail. In EMNLP-2001,
pages 44–50, 2001.

[30] D. Sculley and G. M. Wachman. Relaxed online SVMs for
spam filtering. In SIGIR-2007, pages 415–422, 2007.

[31] R. Segal. Combining global and personal anti-spam filtering.
In CEAS-2007, 2007.

[32] V. N. Vapnik. Statistical Learning Theory. John Wiley &
Sons, 1998.

[33] W. Yih, J. Goodman, and G. Hulten. Learning at low false
positive rates. In CEAS-2006, 2006.

[34] W. Yih, R. McCann, and A. Kolcz. Improving spam filtering
by detecting gray mail. In CEAS-2007, 2007.


