
Learning at Low False Positive Rates

Wen-tau Yih
Microsoft Research
One Microsoft Way

Redmond, WA, USA

scottyih@microsoft.com

Joshua Goodman
Microsoft Research
One Microsoft Way

Redmond, WA, USA

joshuago@microsoft.com

Geoff Hulten
Microsoft

One Microsoft Way
Redmond, WA, USA

ghulten@microsoft.com

ABSTRACT
Most spam filters are configured for use at a very low false-
positive rate. Typically, the filters are trained with tech-
niques that optimize accuracy or entropy, rather than per-
formance in this configuration. We describe two different
techniques for optimizing for the low false-positive region.
One method weights good data more than spam. The other
method uses a two-stage technique of first finding data in the
low false-positive region, and then learning using this sub-
set. We show that with two different learning algorithms,
logistic regression and Naive Bayes, we achieve substantial
improvements, reducing missed spam by as much as 20%
relative for logistic regression and 40% for Naive Bayes at
the same low false-positive rate.

1. INTRODUCTION
In most practical spam filtering, users are much more con-

cerned about not losing good mail (ham) than about receiv-
ing a few pieces of spam. On the other hand, most machine
learning systems are trained using algorithms that assume
that missing good mail and receiving spam are equally bad.
After the training is performed, a threshold is set to achieve
the desired low false positive rate (low missed good mail),
but the actual filter optimization was performed for a differ-
ent criterion, typically optimizing for accuracy or entropy.
Accuracy optimizes for equal costs for false positives and
false negatives; entropy optimizes for estimating probabili-
ties correctly, across the entire range of probabilities: neither
optimizes for the actual area of interest.

In the anti-spam literature, there has been relatively little
research into how to optimize specifically for the low false
positive situation, other than simply setting a threshold. In
this paper, we explore the question of whether by explicitly
changing our model or optimization criterion we can do a
better job of learning for this low false positive region.

We will explore two different techniques. The first idea is
to simply weight good messages (ham) as more valuable than
spam data. This technique is moderately well known, and is
often called stratification. However, it may appear that with
probabilistic learning models, this will simply shift probabil-
ities; indeed, Elkan [4] argued that this technique will have
little effect in practice, especially for techniques like Naive
Bayes. We explain what causes the improvement for Naive
Bayes – regularization – and we show empirically that for

CEAS 2006 - Third Conference on Email and Anti-Spam,July 27-28, 2006,
Mountain View, California USA

spam filtering, the improvements can be large. We also show
that an additional rotational effect applies for discriminative
techniques like logistic regression.

The second idea is novel, more complex, and also works
better. With this method, we first find data that has a very
low probability of being spam according to our models. We
exclude this data from our training, and retrain on only the
portion of the data that falls in the low false positive region.
This causes the second model to focus on this region, and
improves accuracy.

We try both of these techniques on a very large corpus of
hand labeled data, as well as trying them in combination.
We use two different learning algorithms, logistic regression
and Naive Bayes. We find that both of these techniques
can substantially reduce the percentage of missed spam at a
given false positive rate in the region of interest. For logistic
regression, the reduction can be as much as 20%. For Naive
Bayes, the reduction can be as much as 40%.

2. METHODS
In this section, we first briefly review the two learning al-

gorithms we use, logistic regression and Naive Bayes, in part
to review their optimization criteria, which in both cases do
not focus on any particular section of an ROC curve, but
instead try to get overall probabilities as accurate as possi-
ble.

We then describe and justify each of our two methods,
both of which lead to improvements on real data.

2.1 Background
In these experiments, we use two different machine learn-

ing algorithms: logistic regression and Naive Bayes. In this
background section, we quickly summarize both of these al-
gorithms.

Logistic regression models are also called maximum en-
tropy models in some communities, and are equivalent to a
certain kind of single layer neural network. In particular,
logistic regression models are of the form

Pw(Y = 1|x) =
exp(w · x)

1 + exp(w · x)
(1)

In this equation, Y is the variable being predicted (in this
case, Y takes the values 0 or 1, with 1 meaning that a mes-
sage is spam). x represents the input data, such as the words
in the message; for instance, it can be a vector of 1’s and
0’s, with a 1 indicating that a particular word is present in
the message. Finally, w represents a set of weights. These
weights indicate the relative weights for each word.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

a) A data set that is suitable for this model b) First-stage classifier

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

c) Second-stage training data d) Second-stage classifier

Figure 1: Illustration of the Two-Stage Filtering Approach: �’s and ×’s represent positive and negative

examples, respectively

We learn these weights in such a way as to maximize the
probability of the training data. In particular, we find

arg max
w

nY
i=1

Pw(Y = yi|xi)

That is, we find a set of weights w that make the training
data as likely as possible: they do as good a job as possi-
ble of predicting that each spam message is spam, and each
good message is good. In practice, we almost always regu-
larize these weights with a Gaussian prior [2]. That is, we
assume that the average weight should be 0, and that very
large weights are unlikely. Letting N(w; 0, σ2) represent the
probability of a variable w being generated by a Gaussian
distribution with mean 0 and variance σ2, the actual formula
we end up maximizing is:

arg max
w

nY
i=1

Pw(Y = yi|xi) ·
kY

j=1

N(wi; 0, σ2)

which simply says that we try to find the weights w that

overall maximize the probability of the training data, and
the probability of the weights.

The training algorithm we use is Sequential Conditional
Generalized Iterative Scaling (SCGIS) [8], although because
logistic regression models have a global optimum, the choice
of learning algorithm is typically of little importance, except
for training speed considerations.

Naive Bayes is a well known algorithm, especially for spam
filtering [15], so we only review it extremely briefly. Naive
Bayes computes the probability of a message as a whole:
given all possible good messages, what is the probability
that this particular message was generated; given all pos-
sible spam messages, what is the probability that this par-
ticular message was generated. There is an assumption of
conditional independence, that all words in the message were
generated independently of the others, given the label (i.e.,
spam or good) of the message. Naive Bayes is concerned
with accurately estimating the probability of all messages,
and there is no focus on any particular region of an ROC
curve.

2.2 Two-stage filtering
We now describe our new method, two-stage filtering,

which can be used to improve either logistic regression or
Naive Bayes training, or, we assume, other methods as well.

As previously mentioned, most probabilistic machine learn-
ing techniques attempt to maximize the probability of train-
ing data, when in practice, we care about low false negative
rate when using a threshold that produces a low false posi-
tive rate. One way to focus on this low false positive region
is to explicitly select data for training that is in the region
of interest. That is, if we pick training data that is char-
acteristic of the data we care most about, then our learned
filter will be well optimized for this particular data.

One way to think about this is that we don’t care so
much about learning about easy good mail – we will have
no trouble recognizing that. We also don’t care much about
learning about very hard spam – given a low false positive
threshold setting, we simply won’t catch those messages.
We can discard both types of messages, leaving moderately
hard and easy spam, and moderately hard and very hard
good mail, and then train a filter to explicitly distinguish
between those messages: these are the messages that will be
important with a low false positive rate.

Conceptually, our learning method will proceed in two
stages. First, we will learn a filter using all of our data.
Using this filter, we will identify the easy good mail and
the very hard spam – i.e. any messages, good or spam, as-
signed a low probability of being spam. We will discard these
messages. Next, we will train a filter using the remaining
messages.

The four sections of Figure 1 illustrates how and why such
a technique might work. In Figure 1.a, we illustrate a data
set for which this method might be appropriate. Notice
that the data is almost, but not quite linearly separable.
Figure 1.b shows the first-stage classifier we would learn.
We then eliminate all of the “easy” good mail (squares in
the bottom right) and hard spam (×’s in the bottom right),
by picking a threshold for the first-stage classifier. In the
illustration, we use a threshold of 50%, but in practice, any
threshold can be picked. Depending on the threshold picked,
we will end up optimizing on a different type of data, and
thus optimizing for a different false positive rate. Figure 1.c
illustrates the training data for the second-stage classifier.
Finally, Figure 1.d shows the second-stage classifier that is
learned. At test time, we use both the first-stage and second-
stage classifier. We first classify a test message with the
first-stage filter. If the first-stage filter classifies it as good
based on the threshold we picked, we use that verdict. If the
first-stage filter classifies it as being in the region of interest,
we then classify it with the second-stage classifier, and use
the second-stage verdict.

The preceding description is somewhat oversimplified. In
practice, the learning algorithms we use are almost perfect
on the training data. We would thus end up selecting al-
most no data for our second-stage classifier if we tested our
first classifier on the data we used to train it. To solve this
problem, we use cross validation. We split our training data
into n chunks. We train a classifier using n−1 of these, and
test the remaining chunk on the respective classifier. We
repeat this for each of the n chunks. This helps us identify
which messages are truly hard. We thus train n first-stage
classifiers to select the data for the second-stage classifier.

The exact training algorithm is illustrated by Algorithm 1.

Algorithm 1 Two-stage learning

1: INPUT: training set T , threshold θ
2: Split T into ten equal sets, T1, T2, ..., Tn

3: for i = 1 to n do

4: Train a classifier pi using all data T except Ti

5: for all t ∈ Ti do

6: if pi(t) ≥ θ then

7: U = U ∪ t
8: end if

9: end for

10: end for

11: Train a classifier pa using T
12: Train a classifier pb using U
13: Return pa, pb

Notice that the classifier training algorithm is not specified
in our algorithm: we can use logistic regression, Naive Bayes,
or any other algorithm that returns probabilities or scores.

We spent some time to figure out the best way to com-
bine the two classifiers in practice at test time. Algorithm 2
shows the method we found. We picked this algorithm
based both on pilot experiments, trying several different
techniques, and based on a theoretical justification. The
algorithm is very simple: use the first-stage classifier, and
if the result is below the threshold, return the probability
from the first-stage classifier; otherwise, run the second-
stage classifier, and return its probability.

There are two cases we need to consider. In the first case,
a message with features x had value pa(x) < θ, so in this
case, pa(x) is our best estimate of its value, and we return
that. But what about the case when pa(x) ≥ θ? What is
our best estimate of its probability of being spam?

Since we are discussing the messages that are above the
threshold based on the first-stage classifier, it is convenient
to use a random variable A to represent this event.

A ≡ [pa(x) ≥ θ]

Notice that for a message with features x that has passed
the first-stage classifier pa, event A is true (i.e., A = 1).

P (y = 1|x) =
P (y = 1, x)

P (x)

=
P (y = 1, x, A)

P (x)
(2)

=
P (y = 1, x, A)

P (x) · P (A|x)
(3)

=
P (y = 1, x, A)

P (x, A)

= P (y = 1|x, A)

Equation 2 is true because A is always true for messages
that passed the first-stage. Equation 3 is true because A is
true given that the message has passed the first-stage.

This two-stage model is most suitable to data that is not
already well modeled by the base classifier. It is particularly
appropriate when different regions of the data have differ-
ent relative distributions. For instance, as we will describe
later, there are many examples of words that are more or
less indicative of spam in the low false positive region than
they are across the training corpus as a whole. Graphically,
the synthesized data in Figure 1.a, illustrates one example

Algorithm 2 Two-stage testing

1: INPUT: classifiers pa and pb, threshold θ, instance t
2: if pa(t) < θ then

3: return pa(t)
4: else

5: return pb(t);
6: end if

Algorithm 3 Training with utility

1: INPUT: training data Tr, utility values up, un

2: T ← φ
3: for all t ∈ Tr do

4: if class(t) = 1 then

5: for i = 1 to up do

6: add example t to T
7: end for

8: else

9: for i = 1 to un do

10: add example t to T
11: end for

12: end if

13: end for

14: Train a classifier p using T

of what such data might look like when viewed in a two-
dimensional representation.

2.3 Training with utility
Another different and yet simple method to focus on the

low false positive rate region is to treat positive and negative
training examples differently. Specifically, the cost of a false
positive prediction (misclassifying a legitimate message as
spam) should be higher. This is roughly equivalent to saying
that if we are not sure about whether an email is spam or
not, it’s better to say that it is not.

The typical way to bias probabilistic machine learning
methods is to simple use a threshold. For instance, if miss-
ing good mail has cost un, and receiving spam has cost up,
then we can maximize utility by computing

un · P (Y = 0|x) > up · P (Y = 1|x)

un · P (Y = 0|x) > up · (1− P (Y = 0|x))

(un + up) · P (Y = 0|x) > up

P (Y = 0|x) > up/(un + up)

That is, from utility theory, we can compute an appropri-
ate threshold, assuming the model is well calibrated. For
models like Naive Bayes where the calibration is particu-
larly imperfect, we can examine held out data and set a
threshold empirically.

A less common approach is to bias the training data. For
example, if we assign 10 as the utility value to negative
examples (good mail) and 1 to positive examples (spam),
then for each negative training examples, we duplicate it 10
times to form a new set of training examples. This method
is depicted in Algorithm 3. This idea dates back at least to
Breiman et al. [1].

In practice, there are often tricks in the base learning
algorithm to avoid generating artificial examples. For ex-
ample, when training a logistic regression classifier using
gradient descent, updates can simply be multiplied by the

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5

Figure 2: Example of rotation when training logistic

regression with utility: �’s and ×’s represent posi-

tive and negative examples, respectively

corresponding utility value. When training logistic regres-
sion using SCGIS [8], which examines various counts and
expected probabilities, we simply multiply these values by
the utility in a few places. For Naive Bayes, the training
process, which just uses frequency counting, does not need
to be changed. The feature frequencies can be simply cor-
rected by multiplying by the corresponding utility values.

Although this idea is well known in some communities,
we are not aware of it having been used before for spam
filtering. As we will describe below, although the idea is
common, it is not clear in practice how well it will work,
compared to simply using a different threshold setting. We
have typically seen it used in cases of skewed training data,
especially with non-probabilistic models that optimize accu-
racy, like non-probabilistic decision trees [1], or SVMs [12]:
when probabilities are available, the threshold setting tech-
nique is more common.

Training with utility can have two effects; the first is to
bias the learner, independent of regularization; the second
is a regularization effect.

One important advantage of ROC analysis is that it only
depends on the order of the assignments. Any monotonic
transformation of the score function will not affect the re-
sult [6]. Therefore, ignoring regularization issues, one might
guess that training with utility simply changes the prior (a
monotonic transformation), and has no impact on the ROC
curve.

For Naive Bayes, this intuition is correct when regulariza-
tion (e.g. a Dirichlet prior) is not applied. This is because
with duplicated examples, the estimated conditional proba-
bility P (x̄|Y) will remain the same. For logistic regression, it
turns out that the learned distribution is actually changed.
A simple example, as shown in Figure 2 illustrates how this
can be the case. The horizontal line in the figure illustrates
the logistic regression separator that is learned when the
positive and negative utilities are equal. The diagonal line
illustrates the separator learned when a much larger utility
is placed on the negative examples. As can be seen, utility
scores can actually cause a rotation in the learned separator,
and rotations (as opposed to shifts) lead to different ROC

curves.
In addition, for both Naive Bayes and logistic regression,

there is an effect on the regularization. Consider an example
with Naive Bayes where a word A occurs 0 times in good
mail, and a word B occurs once in good mail, in a corpus
with 10 good messages, and assume plus-one regularization.
In this case, we get P (A|y = 0) = 1/11 and P (B|y = 0) =
2/11: an occurrence of the word doubles the probability of
being good. Now, if we weight the corpus with 10 times as
much weight on good mail, we now get a value P (A|y = 0) =
1/101 and a value P (B|y = 0) = 11/101: an occurrence of
the word increases the relative probability by a factor of
11. The utility weighting thus makes the good estimator
much more sensitive to the presence of words: a single good
example of a word can substantially raise the impact that
that word has. Training with utility has a similar effect for
regularized logistic regression, where the increased counts
help overcome the prior disproportionately.

The strength of the regularization effect is somewhat sur-
prising. Elkan [4] argued that for Bayesian techniques, there
would be little impact from training with utility:

A Bayesian learning method essentially learns a
model P (X|j) of each class j separately. If the
frequency of a class is changed in the training
set, the only change is to the estimated base rate
P (j) of each class. Therefore there is little rea-
son to expect the accuracy of decision making
with a Bayesian classifier to be higher with any
particular base rates.

Elkan ignored regularization effects. As we will show em-
pirically, training with utility can indeed lead to large im-
provements with Naive Bayes: the regularization effects are
larger than what might be expected, especially in a domain
like spam filtering.

Notice that the effect of training with utility may depend
on the exact learning algorithm that is used. With logistic
regression, we see both hyperplane rotation and shift, even
without regularization effects, and we see additional effects
because of regularization. For separable data trained with
a hard margin SVM, utility weighting has no impact at all:
there is no regularization, and since only the support vec-
tors define the separating hyperplane, having more identical
support vectors will not change the hyperplane in the hard-
margin case. For soft margin SVMs, training with utility
has an impact both because of regularization, and because
it can cause hyperplane rotation; but the kinds of examples
that will cause a hyperplane to rotate for a soft-margin SVM
are rarer than they are for logistic regression.

3. EXPERIMENTAL RESULTS
In this section, we describe experimental results of apply-

ing the proposed techniques on a large corpus in a realistic
setting. We first introduce the data we use, and then give
ROC curves for each of the new methods applied to logistic
regression and Naive Bayes. Finally, to understand the be-
haviors of the classifiers learned in the two-stage approach,
we also examine the weight differences of features, showing
that some features do change weight substantially.

3.1 Data
For a practical research topic like anti-spam, it is best to

evaluate techniques in a realistic setting. Fortunately, we

have access to the Hotmail Feedback Loop data, which is
collected by polling over 100,000 Hotmail volunteers daily.
In this feedback loop, each user is provided with a special
copy of a message that was addressed to him, and is then
asked to hand-label this message as Good or Spam. The
original copy of the message might have been deleted, or
been put in the junk folder, or might be in the user’s inbox
already: this is an additional copy. By asking users to label
their own messages, we believe we get judgments that only
they can make, across many languages, and with an up-to-
date data source. Analyzing this data, we find that very
roughly 3% of user labels are errors. In some cases, we
can be sure that a message is labeled in error. Examples
include messages labeled as good that are really virus or
phishing messages, or a message from an amorous young
woman that appears to be specially sent to the recipient,
but is in fact sent to many thousands of people. In other
cases, it is extremely difficult to tell whether a user has made
an error or not. We might find for an identical message that
20% or 50% or 80% of users labeled it as spam, while the
others considered it good. Unfortunately, there is often no
way to know whether some of these users made a mistake or
got tricked, or some users were spammed while others opted
in for the same content (e.g. a newsletter).

For the experiments in this paper, the training data are
messages received between July 1st, 2005 and November
30th, 2005. We randomly picked 5,000 messages from each
day and the total number of messages for training is 765,000.
Similarly, the testing data is taken randomly from messages
received between December 1st, 2005 and December 15th,
2005. 10,000 messages were drawn from each day, which
constructs a collection of 150,000 testing messages. From
each message, we extracted features consisting of subject
keywords and body keywords that occurred at least three
times in the training set. This is a subset of the usual fea-
tures we use, which also includes many proprietary features;
we used this subset in this paper to make it easier to repli-
cate our results; results trained with our full feature set show
similar improvements.

3.2 Results
Note that the results reported here are quite a bit worse

than our true performance in commercial applications for a
number of reasons. First, the machine learning system we
describe here is only one component of a larger system that
also uses other techniques, such as IP blocklists, IP safelists
like Bonded Sender1, user supplied safelists, etc. Second, in
order to make the experiments more replicable, we chose to
use a subset of our full feature set, only subject and body
features, rather than including other proprietary features.
Third, in order to simplify the experiments, we used some-
what less training data – 765,000 messages – than we use
commercially, although this is still almost an order of mag-
nitude larger than any publicly available spam collection.
Fourth, most “errors” at a false positive rate of 3% or below
turn out not be spam filter errors, but instead are labeling
errors. As we mentioned, we find that users typically make
approximately 3% labeling errors, so most “false positives”
at a 3% error rate or below are not errors at all. Real er-
rors that we do find at low false positive rates are only very
rarely personal mail from one user to another; more typi-
cally they are legitimate advertisements that users may be

1http://www.bondedsender.com

0.4

0.5

0.6

0.7

0.8

0.9

0.02 0.04 0.06 0.08 0.1 0.12 0.14T
ru

e
P
o
si

ti
v
e

R
a
te

(C
a
u
g
h
t

S
p
a
m

)

False Positive Rate (Misclassified Good Mail)

ROC Curves (Logistic Regression)

Utility&2-Stage
2-Stage
Utility

Original

Figure 3: The performance of four different ap-

proaches with logistic regression learning

just as happy to have in their junk folder. The false posi-
tive rates in the results below may seem surprisingly high,
but the regions displayed in the charts below do correspond
to real regions of interest for this particular component of
the larger system, especially at the “junk folder” threshold
– that is, for messages that are put into a junk folder, rather
than deleted outright. Of course, when combined with other
techniques, including user-supplied safelists and global IP
safelists, and with our full training set and features, actual
false positive rates are substantially lower.

We evaluated our methods with two different learners –
logistic regression and Naive Bayes. For each of the learning
algorithms, we tested four cases: original, which uses just
the baseline learning algorithm; utility, which weights nega-
tive examples (good mail) as 10 times more important than
the positive examples (spam); 2-stage, where the threshold
is picked at roughly the 0.2 false positive rate; and utility
and 2-stage, which is the method that combines both utility
and 2-stage methods. The performance in ROC curves is
shown in Figure 3 and Figure 4, where each point of a given
curve corresponds to a different threshold value.

As can be seen in the figures, both the utility and 2-stage
methods are consistently better than the original approach
for this data set. Also shown in Figure 3, the utility method
and the 2-stage method perform fairly closely, and indeed
cross. The utility method is slightly better for higher false
positive rates, while the 2-stage method is better at the low-
est false positive rates. Their false negative reduction rates
compared to the original curve are about 18%. The com-
bined approach works better than either method separately:
its false negative reduction rate is a little more than 20% and
its performance roughly matches the 2-stage method when
the false positive rate is below 0.06.

Results are similar for Naive Bayes, although the improve-
ments are even larger. As shown in Figure 4, when using
Naive Bayes, the 2-stage method is consistently more ef-
fective than the utility method. Compared to the original
curve, the relative false negative rate reduction for the 2-
stage method is about 25% in this ROC region, while the
utility method has roughly a 10% false negative reduction
rate. The effect of combining these two approaches is in gen-

0.4

0.5

0.6

0.7

0.8

0.9

0.02 0.04 0.06 0.08 0.1 0.12 0.14T
ru

e
P
o
si

ti
v
e

R
a
te

(C
a
u
g
h
t

S
p
a
m

)

False Positive Rate (Misclassified Good Mail)

ROC Curves (Naive Bayes)

Utility&2-Stage
2-Stage
Utility

Original

Figure 4: The performance of four different ap-

proaches with Naive Bayes learning

eral better than each individual approach. When applied on
Naive Bayes, the combined reduction rate can be as high as
40% relative compared to the original curve in some regions.
However, when the false positive rate is lower than 0.06, the
advantages of combination vanish, and the 2-stage method
alone is better.

It is also interesting to compare Figure 3 and Figure 4.
Here, we see that unsurprisingly, filters trained based on lo-
gistic regression are substantially better than those trained
on Naive Bayes. However, the performance gap shrinks after
the two-stage and utility methods are applied. Depending
on which false positive rate point we pick, the combined
approach on Naive Bayes can be competitive with the com-
bined approach on logistic regression, and can outperform
the original logistic regression learner.

3.3 Feature weight analysis
In the two-stage approach, the two classifiers are trained

using the same feature set but with different examples. It is
therefore interesting to see how the same features are treated
differently by these two classifiers. In particular, we would
like to find features that change weight substantially from
the first stage to the second stage, to understand better why
the 2-stage approach helps.

We examined the weights of the first-stage and the second-
stage classifiers learned with 2-stage logistic regression, and
found that some features are treated very differently. For
example, words like unsubscribe and click are considered
more spammy by the first-stage classifier. One possible
reason might be that both spam messages and commercial
newsletters often contain these words. A message without
these words seems more like a legitimate message. How-
ever, to the second-stage classifier, these words may not be
as informative as in the first-stage. Other features that are
more helpful to distinguish spam and spam-like good mail
will have higher weights now.

4. RELATED WORK
In this section, we briefly survey related literature. There

is a rich literature on cost-sensitive learning, and it is beyond
the scope of this paper to survey all of it: we focus on some

of the most important related work.
Training with utility, sometimes called stratification, is a

well known method dating back at least to Breiman [1]. De-
spite being well known, as we noted in Section 2.3, Elkan [4]
has argued that in at least some cases, including for Naive
Bayes, this method will not work well. Our contribution
then is threefold: the empirical result that this method
works well for spam filtering; an explanation based on reg-
ularization for why it works better than what Elkan sug-
gested; and the observation that the reasoning that applies
to generic probabilistic techniques like Naive Bayes does not
apply to discriminative probabilistic techniques like logistic
regression.

The technique of training using utility has also been used
in several tasks. For example, it has been used in changing
the prior when building a decision tree [1]. It is also used to
improve the SVM performance when handling highly-skewed
data or having different misclassification costs [12, 10].

Lowd and Meek [11] used re-weighting (similar to our util-
ity weighting) to make a spam filter adapt more quickly:
they weighted recent examples more heavily than older ex-
amples. Their goal however was different from ours: faster
adaptation, particularly to new spam, rather than more sen-
sitivity to false positives; the details of which messages were
re-weighted thus also substantially differed.

The two-stage filtering approach appears to be novel. Al-
though there are many related techniques, which we will
survey in this section, the idea of using multiple filters specif-
ically to focus the training on the low false positive region
is new. The 2-stage filtering technique can be thought of
as a special form of decision list [13] with only two layers,
which in some domains is also called as cascade of classifiers.
While there are many previous uses of multiple filters in gen-
eral and cascades in particular, they are all focused on other
goals: improving accuracy; or improving all-around proba-
bility estimates, with no particular focus; or for speeding up
the system.

One type of previous work used cascades primarily for
the purpose of reducing training speed. This is a moderately
common technique, and we cite only two examples here. Vi-
ola and Jones [16] used cascades to improve speed in an ob-
ject detection task. By eliminating the least likely examples
with simple classifiers, they were able to apply more com-
plex classifiers to a relatively small number of regions. Roth
and Yih [14] used a similar technique in text processing,
applying a simple classifier to a large number of examples,
and a more complex one to the smaller number of remaining
cases. Unlike either of these (or many similar papers), our
second-stage classifier uses exactly the same features as our
first-stage classifier, and takes the same amount of time.

Training classifiers using different subsets of the data is
also similar to Boosting [7, 5]. Our methods are different
from Boosting in several ways. First, we use a threshold to
select a region of interest, which specifically focuses on low
false positive region; boosting methods are usually symmet-
ric. Second, we use cross validation, so that we can actually
select points near this region. Boosting in general focuses
on improving accuracy at the 50/50 point, or on improving
the overall probability estimate, while we focus on a par-
ticular region. Third, at test time boosting takes a linear
combination of results, while we combine classifiers in a dif-
ferent way. In principal, our technique could be combined
with boosting, using boosting in both the first stage and the

second stage, in each case improving classifier accuracy.
MetaCost [3] is a technique for use in cost-sensitive do-

mains. At first glance, it appears similar to our 2-stage
learning technique. MetaCost uses bagging to get proba-
bility estimates even from non-probabilistic classifiers, and
to improve the estimates from probabilistic ones. However,
MetaCost does not actually use the desired utility as part
of the training mechanism: it is focused on getting accurate
overall probability estimates so that the standard utility-
theoretic thresholding can be used. It is also much more
expensive than our method at test time, since it requires
using the complete set of bagged classifiers on each test in-
stance, while we use at most two classifiers at test time.

Kolcz [9] describes a technique to do local (test document
specific) feature selection for Naive Bayes, with the goal
of improving spam catch rates near the zero false positive
point. This method is very different than any of the tech-
niques described here. In principal, it could be combined
with either the utility or two-stage filtering techniques. We
did not implement and compare to this technique in part be-
cause our goal was not to improve Naive Bayes in particular,
but was rather to show that the two-stage filtering technique
works well with more than one learning algorithm.

5. CONCLUSIONS
It is often assumed that because learning methods like

logistic regression and Naive Bayes return probabilities, the
best way to optimize them for a low false positive rate is
to simply choose a low probability threshold [4]. But in
practice, we find that we can do a better job by specifically
attempting to model the region of interest. We have show
two different techniques that reduce false negative rates in
the low false positive region.

First, we can train with utility. As we have shown, this can
have two different effects. Intuitively, one might think that
this simply shifts a linear separator, and thus has no impact
on an ROC curve. As we have shown, in the case of logistic
regression, this will actually change the orientation of the
separator, even without regularization. For Naive Bayes,
however, it does not impact the separator orientation in the
unregularized cases. In practice, both logistic regression and
Naive Bayes are regularized, in which case training with
utility has an impact both for Naive Bayes and for logistic
regression.

Second, we have introduced a novel approach, two-stage
filtering. This method specifically chooses training data
from our region of interest. We have shown that this tech-
nique works well across at least two different learning algo-
rithms.

We have shown that both two-stage filtering and train-
ing with utility can result in substantially improved spam
filtering at a given low false positive rate. We can reduce
missed spam by as much as 20% relative for logistic regres-
sion, and by as much as 40% relative for Naive Bayes. These
substantial improvements can be very helpful in a practical
system.

6. ACKNOWLEDGMENTS
We thank John Platt and Chris Meek for many helpful

discussions. We are also grateful to anonymous reviewers
for their valuable comments.

7. REFERENCES
[1] L. Breiman, J. Friedman, R. Olshen, and C. Stone.

Classification and Regression Tress, pages 114–115.
Wadsworth, 1984.

[2] S. F. Chen and R. Rosenfeld. A gaussian prior for
smoothing maximum entropy models. Technical
Report CMU-CS-99-108, Computer Science
Department, Carnegie Mellon University, 1999.

[3] P. Domingos. MetaCost: A general method for making
classifiers cost-sensitive. In Proceedings of the Fifth
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
155–164, 1999.

[4] C. Elkan. The foundations of cost-sensitive learning.
In Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, 2001.

[5] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan.
AdaCost: misclassification cost-sensitive boosting. In
Proceedings of the Sixteenth International Conference
on Machine Learning, pages 97–105. Morgan
Kaufmann, San Francisco, CA, 1999.

[6] T. Fawcett. ROC graphs: Notes and practical
considerations for researchers. Technical Report
HPL-2003-4, HP Labs Tech Report, 2003.

[7] Y. Freund and R. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[8] J. Goodman. Sequential conditional generalized
iterative scaling. In ACL ’02, 2002.

[9] A. Kolcz. Local sparsity control for naive Bayes with
extreme misclassification costs. In Proceedings of the
Eleventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
128–137, 2005.

[10] A. Kolcz and J. Alspector. SVM-based filtering of
e-mail spam with content-specific misclassification
costs. In Proceedings of the TextDM’01 Workshop on
Text Mining, 2001.

[11] D. Lowd and C. Meek. Good word attacks on
statistical spam filters. In The Conference on Email
and Anti-Spam (CEAS), 2005.

[12] K. Morik, P. Brockhausen, and T. Joachims.
Combining statistical learning with a knowledge-based
approach – a case study in intensive care monitoring.
In Proceedings of the Sixteenth International
Conference on Machine Learning, pages 268–277,
1999.

[13] R. Rivest. Learning decision lists. Machine Learning,
2(3):229–246, 1987.

[14] D. Roth and W. Yih. Relational learning via
propositional algorithms: An information extraction
case study. In Proceedings of the Seventeenth
International Joint Conference on Artificial
Intelligence, pages 1257–1263, 2001.

[15] M. Sahami, S. Dumais, D. Heckerman, and
E. Horvitz. A Bayesian approach to filtering junk
e-mail. In AAAI’98 Workshop on Learning for Text
Categorization, July 1998.

[16] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In CVPR-01, 2001.

