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Abstract

This paper develops a new paradigm for relational
learning which allows for the representation and
learning of relational information using proposi-
tional means. This paradigm suggests different
tradeoffs than those in the traditional approach to
this problem – the ILP approach – and as a result
it enjoys several significant advantages over it. In
particular, the new paradigm is more flexible and
allows the use of any propositional algorithm, in-
cluding probabilistic algorithms, within it.
We evaluate the new approach on an important
and relation-intensive task - Information Extraction
- and show that it outperforms existing methods
while being orders of magnitude more efficient.

1 Introduction
Relational learning is the problem of learning structured con-
cept definitions from structured examples. Relational repre-
sentations use a first-order model to describe the problem do-
main and examples are given to the learner in terms of objects
and object relations rather than by simple propositions.

In a variety of AI problems such as natural language un-
derstanding related tasks, visual interpretation and planning,
given a collection of objects along with some relations that
hold among them, the fundamental problem is to learn defini-
tions for some relations or concepts of interest in terms of the
given relations. Examples include the problem of identifying
noun phrases in a sentence in terms of the information in the
sentence, detecting faces in an image or defining a policy that
maps states and goals to actions in a planning situation. In
many of these cases it is natural to represent and learn con-
cepts relationally; propositional representations might be too
large, could lose much of the inherent domain structure and
consequently might not generalize well. In recent years, this
realization has renewed the interest in studying relational rep-
resentations and learning.

Inductive Logic Programming (ILP) is an active subfield
of machine learning that addresses relational learning and is
a natural approach to apply to these tasks. While, in principle,
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ILP methods could allow induction over relational structures
and unbounded data structures, theoretical and practical con-
siderations render the use of unrestricted ILP methods impos-
sible. Studies in ILP suggest that unless the rule representa-
tion is severely restricted the learning problem is intractable.
While there are several successful heuristics for learning ILP
programs, there are many practical difficulties with the in-
flexibility, brittleness and inefficient “generic” ILP systems.
In most cases, researchers had to develop their own, problem
specific, ILP systems [Mooney, 1997] but have not always
escaped problems such as search control and inefficiency -
especially in large scale domains like NLP.

This paper develops a different paradigm for relational
learning that allows the use of general purpose and efficient
propositional algorithms, but nevertheless learns relational
representations. Our paradigm takes a fresh look at some
of the restrictions ILP systems must make in order to work
in practice and suggests alternatives to these; as a result,
it enjoys several significant advantages over traditional ap-
proaches. In particular, the new paradigm is more flexible and
allows the use of any propositional algorithm, including prob-
abilistic algorithms, within it. It maintains the advantages of
ILP approaches while allowing more efficient learning, im-
proved expressivity and robustness.

At the center of our paradigm is a knowledge representa-
tion language that allows one to efficiently represent and eval-
uate rich relational structures using propositional representa-
tions. This allows us to learn using propositional algorithms
but results in relational concepts descriptions as outcome.

This paper evaluates the new paradigm in the domain of In-
formation Extraction (IE). This is the NLP task of extracting
specific types or relevant items from unrestricted text. Rela-
tional learning methods are especially appealing for learning
in this domain since both the target concepts and the informa-
tion in the domain (within and across documents) are often
relational. We develop an IE system based on our paradigm;
the learning component of our system makes use of a fea-
ture efficient learning algorithm that is especially suitable for
the nature of our paradigm. However, we show that stan-
dard learning algorithms like naive Bayes also work well with
it. Experimental comparisons show that our approach outper-
forms several ILP-based systems tried on this tasks, sometime
significantly, while being orders of magnitude more efficient.



2 Propositional Relational Representations
In this section we present a knowledge representation lan-
guage that has two components: (1) a subset of first order
logic (FOL) and (2) a collection of structures (graphs) defined
over elements in the domain.

The relational language � is a restricted (function free)
first order language for representing knowledge with respect
to a domain � . The restrictions on � are applied by limiting
the formulae allowed in the language to a collection of formu-
lae that can be evaluated very efficiently on given instances
(interpretations). This is done by (1) defining primitive for-
mulae with limited scope of the quantifiers (Def. 2.1). (2)
General formulae are defined inductively in terms of prim-
itive formulae in a restricted way that depends on the rela-
tional structures in the domain. The emphasis is on locality
with respect to these relational structures that are represented
as graphs over the domain elements.

This language allows the encoding of first order represen-
tations and relational structures as propositions and thus sup-
ports the use of better learning algorithms, including gen-
eral purpose propositional algorithms and probabilistic algo-
rithms over the elements of the language. This approach ex-
tends previous related constructions from ILP [Lavrac et al.,
1991; Khardon et al., 1999] but technically is more related
to the latter. In the rest of this section we present the main
constructs of the language. We omit many of the standard
definitions and concentrates on the unique characteristics of
� . See, e.g., [Lloyd, 1987] for general details.

The vocabulary � consists of constants, variables, predi-
cate symbols, quantifiers, and connectives.

Definition 2.1 A primitive formula is defined inductively: (1)
A term is either a variable or a constant. (2) Let p be a k-ary
predicate, �������	�	�	�
�
� terms. Then ������	���	���	���
��� is an atomic
formula. (3) Let F be an atomic formula, and z be a variable.
Then �������� and �������� are atomic formulae. (4) An atomic
formula is a primitive formula. (5) If F and G are primitive
formulae, then so are ������ , ��! #"�� , ��!$#"�� .
Notice that for primitive formulae in � the scope of a quan-
tifier is always the unique predicate that occurs with it in
the atomic formula. We call a variable-less atomic formula
a proposition and a quantified atomic formula, a quantified
proposition [Khardon et al., 1999]. The informal semantics
of the quantifiers and connectives is as usual.

Before we move on to extend the language � we discuss
the domain and the notion of an instance.

Definition 2.2 (Domain) The language � is defined over a
domain � which consists of a structured element %'&)(+*,�.-0/
where * is a collection of typed elements and - is a set of
partial orders over * (specifically, each partial order 132546-
is an acyclic graph �782
�:9;2<� , where 782�=>* and 9;2 is a set
of edges on 782 ). Along with it, for each constant there is an
assignment of an element in 7 and for each k-ary predicate,
an assignment of a mapping from 7 � to ? 0,1 @ ( ? true, false @ ).
Example 2.1 The fragment in Fig. 1 forms a domain �A&
�*B�:-0� , where 7 consists words TIME, :, 3,:, 30, pm and
the phrase 3 : 30 pm and - consists of two linked lists (de-
noted in the solid line and the dashed line). In general 132

Figure 1: A fragment of an article

could be more complex and represent, say, a parse tree over
a sentence.

The notion of types is used as a way to classify elements
in the language according to their properties. In particular,
we will think also of predicates as typed in the sense that
their domain is typed. We distinguish within the set * two
main types; a set CEDF* of objects and a set GEDF* of
attributes. Correspondingly, we define types of predicates.
Type H predicates take as their first argument an element in
C and as their second argument an element in G . Type H
predicates describe properties of elements in C ; thus ��JIK�
LM�
may also be written as ��JI��N&OL , with the semantics that in a
given interpretation, �PJIK�
LM� holds. All other predicate types
will have elements in C as their arguments. These predicates
will be defined via elements in - , and will have 1#4Q- as their
type. Specifically, �SRTJI3�U�:IWVU� indicates that I3�U�.IWV are nodes in
the graph 1X4Y- and there is an edge in 1 between them.

Elements in C represent objects in the world. For exam-
ple, in NLP applications such as ours these might be words,
phrases, sentences or documents. Predicates of type H de-
scribe properties of these elements – spelling of a word, syn-
tactic tag of a word, a phrase type, etc. The graphs in - de-
scribe relations between (sets of) objects – word Z[� is before
Z\V , ZB� is the subject of the verb Z]V , etc. (It is possible to
generalize - to a collection of hypoergraphs, but this is not
needed in the current application.) As usual, the “world” in
which we interpret the aforementioned constructs could be a
single sentence, a document, etc.

Definition 2.3 An instance is an interpretation[Lloyd, 1987]
which lists a set of domain elements and the truth values of
all instantiations of the predicates on them.

Given an instance ^ , a formula � in � is given a unique truth
value, the value of � on ^ , defined inductively using the truth
values of the predicates in � and the semantics of the con-
nectives. Since for primitive formulae in � the scope of a
quantifier is always the unique predicate that occurs with it
in the atomic formula, we have the following properties. It
will be clear that the way we extend the language (Sec. 2.1)
maintains this properties (proofs omitted).
Proposition 2.1 Let � be a formula in � , let ^ be an in-
stance, and let �J_ be the time to evaluate the truth value of an
atom � in � . Then, the value of � on ^ can be evaluated in
time ` _Wa3b �J_ .
That is, � is evaluated simply by evaluating each of its atoms
(ground or quantified) separately. This holds, similarly, for
the following version of subsumption for formulae in � .

Proposition 2.2 (subsumption) Let ^ be an instance and letced ?Uf���H�@	gihj?Uf���H�@ be a Boolean function of k variables
that can be evaluated in time �:l . Then the value of the clausec ��N���	m�m	m
� g � on ^ can be evaluated in time �:lXn)` b �
b ,
where the sum is over all k formulae that are arguments of

c
.



2.1 Relation Generation Functions
The definition of the general formulae allowed in � will be
operational and will use the structures in - . To do that we in-
troduce a mechanism that generates more expressive formu-
lae in a way that respects the structures in the domain, thus
restricting the formulae generated.

Definition 2.4 A formula in � maps an instance ^ to its truth
value in ^ . It is active in ^ if it has truth value true in it. We
denote by � the set of all instances – the instance space. A
formula �)4 � is thus a relation over � , � d � hA?Uf���H�@ .
Example 2.2 Let instance ^ be the fragment illustrated
in Ex. 2.1. Some active relations in ^ are word(TIME),
word(pm), and number(30).

Given an instance, we would like to know what are the rela-
tions (formulae) that are active in it. We would like to do that,
though, without the need to write down explicitly all possible
formulae in the domain. This is important, in particular, over
infinite domains or in problems domains such as NLP, where
inactive relations vastly outnumber active relations.

Definition 2.5 Let � be an enumerable collection of rela-
tions on � . A relation generation function (RGF) is a map-
ping " d � h���� that maps ^ 4�� to a set of all elements
in � that satisfy �N�^�� & H . If there is no � 4�� for which
�N�^��0& H , " �^��0&
	 .

RGFs can be thought of as a way to define “kinds” of formu-
lae, or to parameterize over a large space of formulae. Only
when an instance ^ is presented, a concrete formula (or a col-
lection of) is generated. An RGF can be thought of as having
its own range � of relations.

Example 2.3 It is impossible to list all formulae that use the
number predicate in advance. However, RGF can specify
formulae of this kind and, given the instance TIME : 3 :
30 pm, only the active relations of this kind: number(3) and
number(30) – are generated.

In order to define the collection of formulae in � we define
the family of RGFs for � ; the output of these define the for-
mulae in � . RGFs are defined inductively using a relational
calculus. The alphabet of this calculus consists of (i) basic
RGFs, called sensors and (ii) a set of connectives. While the
connectives are the same for every alphabet the sensors vary
from domain to domain. A sensor is a way to encode ba-
sic information one can extract from an instance. It can also
be used as a uniform way to incorporate external knowledge
sources that aid in extracting information from an instance.

Definition 2.6 A sensor is a relation generation function that
maps an instance ^ into a set of atomic formulae in � . When
evaluated on an instance ^ a sensor � outputs all atomic for-
mulae in its range which are active.

Example 2.4 Following are some sensors that are commonly
used in NLP.
� The word sensor over word elements, which outputs ac-

tive relations word(TIME), word(:), word(3), word(30),
and word(pm) from “TIME : 3 : 30 pm”.

� The length sensor over phrase elements, which outputs
active relations len(4) from “3 : 30 pm”.

� The is-a sensor, outputs the semantic class of a word.
� The tag sensor, outputs the part-of-speech tag of a word

The word and len sensors derive information directly from
the raw data, while the is-a sensor uses external informa-
tion sources such as WordNet and the tag sensor uses a pre-
learned part-of-speech tagger.

Several mechanisms are used in the relational calculus to de-
fine the operations of RGFs. We mention here only the fo-
cus mechanism which is actually a binding mechanism that is
used to define quantified formulae in � .

Definition 2.7 Let 9 be a set of elements in the domain. An
RGF  is focused on 9 if, given an instance ^ , it generates
only formulae in its range that are active in ^ due to elements
in 9 . The focused RGF is denoted �� 9�� .
There are several ways to define a focus set. It can be done
explicitly or using the structure - . The focus set is equivalent
to the free variables in FOL representations.

The relational calculus allows one to inductively generate
new RGFs by applying connective and quantifiers over ex-
isting RGFs. Using the standard connectives one can define
RGFs that output formulae of the type defined in Def 2.1.
Details will not be given here. Instead, we describe only one
important type of operations within the relational calculus –
structural operations. These operations exploit the structural
(relational) properties of the domain as expressed in - in or-
der to define RGFs. Thus, more general formulae, that can
have interactions between variables, are generated, while still
allowing for efficient evaluation and subsumption, due to the
graph structure. For example, the structural collocation oper-
ator, colloc, with respect to 1 is defined as follows.

Definition 2.8 Let ���U���UVW��m	m�m�� � be RGFs for � .� I�����I � R�����	���UV��	m	m�m��U��� is a restricted conjunctive opera-
tor that is evaluated on a chain of length � in 1 . Specifically,
let �>&>�*,�.-0� be a domain, with 1Q4 - , and �M�U����V��	m�m	m��3� a
chain in 1 . The formulae generated by � I�����I � R���������UV��	m	m�m��U���
are those generated by ����� �T����� �UV�� ��V���� m	m�m��!�U�"� �3�#��� where
(1) by ��$%� �&$'� we mean that the RGF ��$ is focused on ?#�($�@ (2)
the � operator means that formulae in the output of ��&�)3�
are active formulae of the form �� �" , where � is in the
range of � and " is in the range of  (evaluated on ^ ). This
is needed since each RGF in the conjunction may produce
more then one formulae.

Example 2.5 When applied with respect to the graph 1
which represents the linear structure of the sentence, � I����+I � R
simply generates formulae that corresponds to ngrams. E.g.,
given the fragment “Dr John Smith”, RGF colloc(word,
word) extracts the bigrams word(Dr)-word(John) and
word(John)-word(Smith).

Similarly to � I�����I � R one can define a sparse collocation
operator with respect to a chain in 1 . This is also a re-
stricted conjunctive operator that is evaluated on a chain in
1 with the following difference. Formulae are generated
by � � I����+I � RT���������V��	m�m	m�� ��� as follows: Let ���U����V��	m�m	m�� g be
a chain in 1 . For each subset ��2�*U���W2,+W�	m	m�m��W2�- of elements
in � , such that ./$102.43 when 5607� , all the formulas:
���(� �W2�*���� �UV�� �W2,+��,�im	m	m�� � �"� �W2�-#�J� are generated.



Notice that while primitive formulae in � have a single
predicate in their scope, the structural properties provides a
way to go beyond that but only in a restricted way that is
efficiently evaluated. Structural operations allow us to de-
fine RGFs that constrain formulae evaluated on different ob-
jects without incurring the cost usually associated with en-
larging the scope of free variables. This is done by enlarg-
ing the scope only as required by the structure of the do-
main, modeled by - . This allows for efficient evaluation as
in Prop. 2.1, 2.2 with the only additional cost being that of
finding chain in the graph (details omitted).

3 Comparison to ILP Methods
Propositional learning on relational features provides a dif-
ferent paradigm for relational learning. While, in principle,
ILP methods could allow induction over relational structures
and unbounded data structures and their expressivity can-
not be matched by propositional methods, theoretical and
practical considerations render the use of unrestricted ILP
methods impossible. Studies in ILP suggest that, unless the
rule representation is severely restricted, the learning prob-
lem is intractable [Kietz and Dzeroski, 1994; Cohen, 1995;
Cohen and Page, 1995]. Several successful heuristics for
learning ILP programs [Muggleton and De Raedt, 1994;
Cussens, 1997; Quinlan, 1990] have made different algorith-
mic and representational restrictions in order to facilitate ILP
although there are still many practical difficulties with the in-
flexibility, brittleness and inefficient “generic” ILP systems.

Our approach offers different tradeoffs than those sug-
gested by the common restrictions made by current ILP sys-
tems. While we cannot say that our paradigm dominates the
traditional ILP approach in general, we believe that in many
cases the alternatives it offers provide a better way to address
relational learning, especially in large scale domains such as
NLP. Below we address some key issues that could help in
developing a better understanding to the suitability of each.
Search: The key difference between the traditional ILP ap-
proach and ours is the way they structure the search space.
In ILP, “features” are generated as part of the search proce-
dure in an attempt to find good bindings. In our case, the
“features” tried by an ILP program during its search are gen-
erated up front (in a data driven way) by the RGFs. Some of
these are grounded and some have free variables in them. The
learning algorithm will look at all of them “in parallel” and
find the best representation. Search control methods used by
ILP methods are thus analogous to the expressivity we give to
our RGFs. The order of “visiting” these features is different.
Knowledge: One of the key cited advantages of ILP meth-
ods is the ability to incorporate background knowledge. In
our paradigm, this is incorporated flexibly using the notion of
sensors. Sensors allow us to treat information that is readily
available in the input, external information or even previously
learned concepts in a uniform way.
Expressivity(I): The basic building blocks of the representa-
tions we use (our formulae) are the same as those used by ILP
representations. As presented in Sec. 2, for a predicate � and
elements LS��� we are not representing only the ground term
� �LS���	� but also � ��6��� ����� ��Y���	� , etc. This is similar to the

work in [Lavrac et al., 1991] only that our structural opera-
tions allow us to avoid some of the determinacy problems of
that approach.
Learning: The relational features generated by our RGFs
provide a uniform domain for different learning algorithms.
Applying different algorithms is easy and straightforward.
Moreover, it is straightforward to use probabilistic models
over this representation and in this way it provides a natu-
ral and general way of using relational representations within
a probabilistic framework. On the other hand, it turns out that
“generic” ILP methods suffer brittleness and inefficiency and
in many cases, researchers had to develop their own, problem
specific, ILP systems [Mooney, 1997].

In particular, while time complexity is a significant prob-
lem for ILP methods, propositional learning is typically a lot
more efficient. In our paradigm, due to the fact that our RGFs
will generate a very large number of relational features (see
“search” above) we adopt a specific learning methodology,
following [Khardon et al., 1999]. While this is not necessary
(as shown in Sec. 5) we discuss this direction next.
Expressivity (II): Several issues can be mentioned in
the context of using linear threshold functions as concept
representation over the relational features extracted using
RGFs [Khardon et al., 1999]. Advocates of ILP meth-
ods suggest that the rich expressive power of FOL provides
advantages for knowledge-intensive problems such as NLP
[Mooney, 1997]. However, given strong intractability results,
practical systems apply many representational restrictions. In
particular, the depth of the clauses (the number of predicates
in each clause) is severely restricted. Thus, the learned con-
cept is actually a � -DNF, for small � . In our paradigm, the
constructs of � I�����I � and � � I�����I � allow us to generate rela-
tional features which are conjunctions of predicates and are
thus similar to a clause in the output representation of an ILP
program. While an ILP program represents a disjunction over
these, a linear threshold function over these relational features
is more expressive. In this way, it may allow learning smaller
programs. The following example illustrates the representa-
tional issues:

Example 3.1 Assume that in several seminar announce-
ments, fragments that represent speaker have the pattern:
�	��� Speaker : Dr FName LName line-feed �	���

An ILP rule for extracting speaker could then be:
before targ(2, “Speaker”) � contains(target, “Dr”) � after targ(1,
line-feed) � speaker(target)
That is, the second word before the target phrase is
“Speaker”, target phrase contains word “Dr”, and the “line-
feed” character is right after the target phrase. In our rela-
tional feature space all the elements of this rule (and many
others) would be features, but the above conjunction is also
a feature. Therefore a collection of clauses of this form be-
comes a disjunction in our feature space and will be learned
efficiently using a linear threshold element.

Finally, we mention that for learning linear threshold el-
ements there exist feature efficient algorithms [Littlestone,
1988] that are suitable for learning in NLP-like domains,
where the number of potential features is very large, but only
a few of them are active in each example, and only a small



fraction of them are relevant to the target concept.

4 Case Study – Information Extraction
Information Extraction (IE) is a natural language processing
(NLP) task that processes unrestricted text and attempts to
extract specific types of items from the text.

This form of shallow text processing has attracted con-
siderable attention recently with the growing need to intel-
ligently process the huge amounts of information available
in the form of text documents. While learning methods have
been used earlier to aid in parts of an IE system [Riloff, 1993;
Soderland and Lehnert, 1994], it has been argued quite con-
vincingly [Califf and Mooney, 1999; Craven and Slattery,
2001] that relational methods are necessary in order to learn
how to directly extract the desired items from documents.
The reason is that the target concepts require the representa-
tion of relations over the source document and learning those
might require induction over structured examples and FOL
representations. Indeed, previous works [Califf and Mooney,
1999; Freitag, 2000] have demonstrated the success of ILP
methods in this domain. This is therefore an ideal domain to
study our proposed relational learning paradigm.

4.1 Problem Description
In this paper, the IE task is defined as locating specific frag-
ments of an article according to predefined slots in a tem-
plate. Each article is a plain-text document that consists of
a sequence of tokens. Specifically, the data used in experi-
ments is a set of ����� seminar announcements from CMU1.
The goal is to extract four types of fragments from each arti-
cle2 – those describing the start time (stime) and end time
(etime) of the seminar, its location (location) and the
seminar’s speaker (speaker). Given an article, our system
picks at most one fragment for one slot. If this fragment rep-
resents the slot, then it is a correct prediction. Otherwise, it is
a wrong prediction (including the case that the article doesn’t
contain the slot at all) [Freitag, 2000].

4.2 Extracting Relational Features
The basic strategy of our IE solution is to learn a classifier that
discriminates a specific desired fragment. First, we generate
examples for this type of fragment. This is done by:

1. Identifying candidate fragments in the document. (All
fragments are candidates; in training, fragments are an-
notated.) Note: fragments may overlap, and only a small
number of them contain desired information.

2. For each candidate fragment, use the defined RGF fea-
tures to re-represent it as an example which consists of
all active features extracted for this fragment.

Let
c & ��<2
�
�<2��P�����	��� �
� $ � be a fragment, with � 2 repre-

senting tokens and . , . +1, �	��� , 5 are positions of tokens

1The data set was originally collected from news-
groups and annotated by Dayne Freitag; it is available on
http://www.isi.edu/ � muslea/RISE/.

2An article might not contain one of the fields, e.g., etime, or
might contain one of them, e.g., the speaker, more than once.

in the document. Our RGFs are defined to extract fea-
tures from three regions: left window ( ��2	��
 �	���	�	���<2�� � ), tar-
get fragment( � 2
���	�	�	�
� $ ), and right window ( ��$�P�U�	���	�	��� $��
 ),
where Z is the window size.

The domain formed by these three regions contains two
types of elements – word elements (e.g., ��2	��
 �	�	���	�
� $��
 ) and
one phrase element (the target region). The RGFs are focused
either on a specific word element (one free variable) or on the
borders of the phrase element (two free variables) and define
relational features relative to these. In the next section we
provide examples of RGFs used in experiments.

4.3 Two-stage Architecture
Once examples are generated, the IE task is accomplished by
two learning stages. The same classifier, SNoW, is used in
both stages, but in a slightly different way.

SNoW [Roth, 1998; Carleson et al., 1999] is a multi-class
classifier that is specifically tailored for large scale learning
tasks. The SNoW learning architecture learns a sparse net-
work of linear functions, in which the targets (fragment types,
in this case) are represented as linear functions over a com-
mon feature space. SNoW has already been used successfully
for a variety of tasks in natural language and visual process-
ing [Golding and Roth, 1999; Roth et al., 2000]. SNoW is
built on a feature efficient learning algorithm, Winnow [Lit-
tlestone, 1988] and therefore is an ideal learning approach to
complement our paradigm, as discussed before. While SNoW
can be used as a classifier and predicts using a winner-take-
all mechanism over the activation values of the target classes,
here we rely directly on the activation value it outputs, com-
puted using a sigmoid function over the linear sum. The nor-
malized activation value can be shown to be a distribution
function and we rely heavily on it’s robustness in our two-
stage architecture. The two stages are (1) Filtering: reduce
the amount of candidates from all possible fragments to a
small number, and (2) Classifying: pick the right fragment
from the preserved fragments by the learned classifier. The-
oretical justification for this architecture will be presented in
a companion paper. Intuitively, this architecture increases the
expressivity of our classification system. Moreover, eliminat-
ing most of the negative examples significantly reduces the
number of irrelevant features, an important issue given the
small data set.
Filtering: One common property of IE tasks is that negative
examples (irrelevant fragments) extremely outnumber posi-
tive examples (fragments that represent legitimate slots). In
the seminar announcements data set, for example, fMm���� of
the fragments represent legitimate slots. This stage attempts
to filter out most of the negative examples without eliminat-
ing positive examples. It can also be viewed as a classifier
designed to achieve high recall, while the classifier in the sec-
ond stage aims at high precision. The filter consists of two
learned classifiers; a fragment is filtered out if it meets one of
the following criteria:

1. Single feature classifier: Fragment doesn’t contain a fea-
ture that should be active in positive examples.

2. General Classifier: Fragment’s confidence value is be-
low the threshold.



System stime etime loc speaker
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

SNoW-IE 99.6 99.6 99.6 97.6 95.0 96.3 90.9 64.1 75.2 83.3 66.3 73.8
NB-IE 98.3 98.3 98.3 96.5 92.8 94.6 76.8 62.0 68.6 40.3 32.0 35.7

RAPIER-WT 96.5 95.3 95.9 94.9 94.4 94.6 91.0 61.5 73.4 79.0 40.0 53.1
RAPIER 93.9 92.9 93.4 95.8 94.6 95.2 91.0 60.5 72.7 80.9 39.4 53.0

SRV 98.6 98.4 98.5 67.3 92.6 77.9 74.5 70.1 72.2 54.4 58.4 56.3
WHISK 86.2 100.0 92.6 85.0 87.2 86.1 83.6 55.4 66.6 52.6 11.1 18.3

Table 1: Results for seminar announcements task

For criterion 1, it turns out that there exists some features
that are (almost) always active in positive examples. For ex-
ample, in our experiments, the length of fragments satisfies
this: [ ���	k  c �L�1����	k��
� ���

] is always satisfied by stime
fragments. Also, [fragment contains a word that is a noun]
always holds in speaker fragments.

For criterion 2, implemented using SNoW, relying on its
robust confidence estimation, the problem becomes finding
the right threshold. Minimum activation values of positive
examples in training data are used as thresholds (for the dif-
ferent types of slots). Examples with lower activation values
are filtered out.

The two stages also differ in the RGFs used. The following,
more crude RGFs are used at the filtering stage:
� Target region: word, tag, word&tag, colloc(word, word),

colloc(word, tag), colloc(tag, word), colloc(tag, tag) on
word elements, and len on the phrase element.

� Left & Right window: word&loc, tag&loc, and
word&tag&loc, where loc extracts the position of the
word in the window.

Classifying: Fragments that survived the filtering stage are
then classified using a second SNoW classifier, for the four
slots. First, an additional collection of RGFs is applied to
enhance the representation of the candidate fragments, thus
allowing for more accurate classification. As before, in train-
ing, the remaining fragments are annotated and are used as
positive or negative examples to train the classifiers. In test-
ing, the remaining fragments are evaluated on the learned
classifiers to determine if they can fill one of the desired slots.
In this stage � different classifiers are trained, one for each
type of fragments. All examples are run through all � classi-
fiers. The RGFs added in this stage include:

For etime and stime:
scolloc[word&loc(-1) � l window 	 , word&loc � r window 	 ],
scolloc[word&loc(-1) � l window 	 , tag&loc � r window 	 ]

For location and speaker:
scolloc[word&loc(-2) � l window 	 , tag � targ 	 , tag&loc(1) � r window 	 ]

The first set of RGFs is a sparse structural conjunction of
the word directly left of the target region, and of words and
tags in the right window (with relative positions). The second
is a sparse structural conjunction of the last two words in the
left window, a tag in the target, and the first tag in the right
window.

A decision is made by each of the � classifiers. A fragment
is classified as type � if the � th classifier decides so. At most
one fragment of type � is chosen in each article, based on the
activation value of the corresponding classifier.

slot pass(training) pass(testing) loss(testing)
stime 4.75% 4.72% 0.94%
etime 1.07% 1.07% 1.64%

location 15.42% 15.30% 3.28%
speaker 14.89% 14.28% 2.79%

Table 2: Filtering efficiency

5 Experimental Results

Our experiments use the same data, methodology and evalu-
ation metrics used by several ILP-based IE systems in previ-
ous works. The systems such as RAPIER [Califf and Mooney,
1999], SRV [Freitag, 2000], and WHISK [Soderland, 1999]
have also been tested on this data set. The data (485 docu-
ments) is randomly split into two sets of equal sizes, one for
training and the other for testing. The reported results are
an average of five runs. As usual, the performance is quan-
tified in terms of Precision (P) – the percentage of correct
predictions – and Recall (R) - the percentage of slots that are
identified. We also report the � H & �
�
 � � ). The results
of our system, SNoW-IE, are shown in the first row of table 1
along with the results of several other ILP-based IE systems
that were tested on this task under the same conditions. An
exception is WHISK, for which the results are from a 10-fold
validation using only H�f�f documents randomly selected from
the training set. The systems also use somewhat different in-
formation sources. The words in the documents are used by
all systems. Part-of-speech tags are used both in RAPIER-
WT and SNoW-IE; SRV uses other predicates that capture
POS information to some extent. A version of RAPIER uses
also semantic information; this can be done in our system by
adding, say, an is-a sensor but, given their results we did not
incorporate this information.

In addition to our SNoW-IE we have also experimented
with a second propositional algorithm, the naive Bayes (NB-
IE) algorithm. NB was used on exactly the same set of
features (same examples) that were generated using our re-
lational paradigm for SNoW, and in exactly the same way.
Although the results of NB-IE are not as good as those of
SNoW-IE – the quality of the classifier is certainly an im-
portant issue – the experiments with a second propositional
algorithm exhibit the fact that our relational paradigm is a
general one. As indicated in [Craven and Slattery, 2001;
Freitag, 2000] a simple minded use of this algorithm is not
competitive for this task; but on top of a paradigm that is able
to exploit the relational nature of the data it compares favor-



ably with ILP methods. Overall, SNoW-IE outperforms the
existing rule-based IE systems on all the four slots.

To clarify, we note that the output representation of our sys-
tem makes use of similar type of relational features as do the
ILP-based systems, only that instead of a collection of con-
junctive rules over these, it is represented as a linear function.

It is difficult to isolate the contribution of our two-stage ar-
chitecture to the quality of the results. We believe, though,
that the ease of incorporating this and other learning archi-
tectures is an indication to the flexibility of the approach and
the advantages of learning with propositional means. Table 2
gives some insight into that, by showing the average perfor-
mance of the filtering stage. The first two columns show the
ratio of training and testing examples that pass the filter. The
third column lists the ratio of positive examples in the testing
set that are filtered out. These fragments do not even reach
the second stage. (Since an article may contain more than
one fragment that represents the same slot, it is sometimes
still possible for the classifier to pick the correct slot.)

6 Conclusion

The use of relational methods is back in fashion. It became
clear that for a variety of AI problems there is a fundamental
need to learn and represent relations and concepts in terms of
other relations. Information Extraction – the task of extract-
ing relevant items from unrestricted text is one such task.

This paper suggests a new paradigm for relational learning
– which allows for the representation and learning of rela-
tional information using propositional means. We argue that
our paradigm has different tradeoffs than the traditional ap-
proach to this problem – the ILP approach – and as a result
it enjoys several significant advantages over it. In particular,
the suggested paradigm is more flexible and allows the use of
any propositional algorithm within it, including probabilistic
approaches. As such, it addresses in a natural and general
way the problem of using relational representations within
a probabilistic framework, an important problem which has
been studied a lot recently.

Our paradigm is exemplified on an important task - Infor-
mation Extraction (IE). Based on our paradigm, we developed
a new approach to learning for IE, and have shown that it out-
performs existing ILP-based methods. Moreover, it is several
orders of magnitude more efficient. We believe that this work
opens up several directions for further work – on relational
learning and knowledge representation and on practical and
efficient solutions to NLP and IE problems.
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