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Abstract

Neural network models are capable of
generating extremely natural sounding
conversational interactions. Neverthe-
less, these models have yet to demon-
strate that they can incorporate content
in the form of factual information or
entity-grounded opinion that would en-
able them to serve in more task-oriented
conversational applications. This paper
presents a novel, fully data-driven, and
knowledge-grounded neural conversation
model aimed at producing more contentful
responses without slot filling. We gener-
alize the widely-used SEQ2SEQ approach
by conditioning responses on both con-
versation history and external “facts”, al-
lowing the model to be versatile and ap-
plicable in an open-domain setting. Our
approach yields significant improvements
over a competitive SEQ2SEQ baseline.
Human judges found that our outputs are
significantly more informative.

1 Introduction

Conversational agents such as Alexa, Siri, and
Cortana have been increasingly popular, as they
facilitate interaction between people and their de-
vices. There is thus a growing need to build sys-
tems that can respond seamlessly and appropri-
ately, and the task of conversational response gen-
eration has recently become an active area of re-
search in natural language processing.

Recent work (Ritter et al., 2011; Sordoni et al.,
2015; Shang et al., 2015; Vinyals and Le, 2015)
has shown that it is possible to train conversa-
tional models in an end-to-end and completely

* This work was conducted at Microsoft.

User input: Going to Kusakabe tonight.
Neural model: Have a great time!
Human: You’ll love it! Try omasake, the best in town.

Figure 1: Responses of fully data-driven conversation models
are often appropriate, but generally lack content characteristic
of human responses.

data-driven fashion, without hand-coding. How-
ever, these fully data-driven systems lack ground-
ing in the real world and do not have access to any
external knowledge (textual or structured), which
makes it difficult to respond substantively. Fig. 1
illustrates the difficulty: while an ideal response
would directly reflect on the entities mentioned
in the query (user input), neural models produce
responses that, while conversationally appropri-
ate, seldom include factual content. This contrasts
with traditional dialog systems, which can easily
inject entities and facts into responses using slot-
filling, but often at the cost of significant hand-
coding, making such systems difficult to scale to
new domains or tasks.

The goal of this paper is to benefit from both
lines of research—fully data-driven and grounded
in external knowledge. The tie to external data is
critical, as the knowledge that is needed to make
the conversation useful is often stored in non-
conversational data, such as Wikipedia, books re-
views on Goodreads, and restaurant reviews on
Foursquare. While conversational agents can learn
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A: Looking forward to trying @pizzalibretto tonight! my expectations are high.
B: Get the rocco salad. Can you eat calamari?

A: Anyone in Chi have a dentist office they recommend? I’m never going back to [...] and would love a reco!
B: Really looved Ora in Wicker Park.

A: I’m at California Academy of Sciences
B: Make sure you catch the show at the Planetarium. Tickets are usually limited.

A: I’m at New Wave Cafe.
B: Try to get to Dmitri’s for dinner. Their pan fried scallops and shrimp scampi are to die for.

A: I just bought: [...] 4.3-inch portable GPS navigator for my wife, shh, don’t tell her.
B: I heard this brand loses battery power.

Figure 2: Social media datasets include many contentful and useful exchanges, e.g., here recommendation dialog excerpts
extracted from real tweets. While previous models (e.g., SEQ2SEQ) succeed in learning the backbone of conversations, they
have difficulty modeling and producing contentful words such as named entities, which are sparsely represented in conversation
data. To help solve this issue, we rely on non-conversational texts, which represent such entities much more exhaustively.

the backbone of human conversations from mil-
lions of conversations (Twitter, Reddit, etc.), we
rely on non-conversational data to infuse relevant
knowledge in conversation with users based on the
context. More fundamentally, this line of research
also targets more useful conversations. While
prior data-driven conversational models have been
essentially used as chitchat bots, access to exter-
nal data can help users make better decisions (e.g.,
recommendation or QA systems) or accomplish
specific tasks (e.g., task-completion agents).

This paper presents a novel, fully data-
driven, and knowledge-grounded neural conversa-
tion model aimed at producing more contentful re-
sponses. It offers a framework that generalizes the
SEQ2SEQ approach (Hochreiter and Schmidhu-
ber, 1997; Sutskever et al., 2014) of most previous
neural conversation models, as it naturally com-
bines conversational and non-conversational data
via multi-task learning (Caruana, 1998; Liu et al.,
2015). The key idea of this approach is that it not
only conditions responses based on conversation
history (Sordoni et al., 2015), but also on exter-
nal “facts” that are relevant to the current context
(for example, Foursquare entries as in Fig. 1). Our
approach only requires a way to ground external
information based on conversation context (e.g.,
via simple entity name matching), which makes it
highly versatile and applicable in an open-domain
setting. This allowed us to train our system at a
very large scale using 23M social media conversa-
tions and 1.1M Foursquare tips. The trained sys-
tem showed significant improvements over a com-
petitive large-scale SEQ2SEQ baseline. To the best
of our knowledge, this is the first large-scale, fully
data-driven neural conversation model that effec-
tively exploits external knowledge, and it does so

without explicit slot filling.

2 Grounded Response Generation

A primary challenge in building fully data-driven
conversation models is that most of the world’s
knowledge is not represented in any existing con-
versational datasets. While these datasets (Ser-
ban et al., 2015) have grown dramatically in
size thanks in particular to social media (Ritter
et al., 2011), this data is still very far from con-
taining discussions of every entry in Wikipedia,
Foursquare, Goodreads, or IMDB. This problem
considerably limits the appeal of existing data-
driven conversation models, as they are bound to
respond evasively or deflectively as in Fig. 1, espe-
cially with regard to those entities that are poorly
represented in the conversational training data. On
the other hand, even when such conversational
data representing most entities of interest did exist,
we would still face challenges as such huge dataset
would be difficult to be used for model training,
and many conversational patterns exhibited in the
data (e.g., for similar entities) would be redundant.

Our approach aims to avoid redundancy and at-
tempts to better generalize from existing conversa-
tional data, as illustrated in Fig. 2. While the con-
versations in the figure are about specific venues,
products, and services, conversational patterns are
general and equally applicable to other entities.
The learned conversational behaviors could be
used to, e.g., recommend other products and ser-
vices. A traditional dialog system would use pre-
defined slots to fill conversational backbone (bold
text) with content; here, we present a more robust
and scalable approach.

In order to infuse the response with factual in-
formation relevant to the conversational context,
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Figure 3: Knowledge-grounded model architecture.

we propose a knowledge-grounded model archi-
tecture depicted in Fig. 3. First, we have available
a large collection of world facts,1 which is a large
collection of raw text entries (e.g., Foursquare,
Wikipedia, or Amazon reviews) indexed by named
entities as keys. Then, given a conversational his-
tory or source sequence S, we identify the “focus”
in S, which is the text span (one or more enti-
ties) based on which we form a query to link to
the facts. This focus can either be identified using
keyword matching (e.g., a venue, city, or product
name), or detected using more advanced methods
such as entity linking or named entity recognition.
The query is then used to retrieve all contextually
relevant facts: F = {f1, ..., fk}.2 Finally, both
conversation history and relevant facts are fed into
a neural architecture that features distinct encoders
for conversation history and facts. We will detail
this architecture in the subsections below.

This knowledge-grounded approach is more
general than SEQ2SEQ response generation, as it
avoids the need to learn the same conversational
pattern for each distinct entity that we care about.
In fact, even if a given entity (e.g., @pizzalibretto
in Fig. 2) is not part of our conversational train-
ing data and therefore out-of-vocabulary, our ap-
proach is still able to rely on retrieved facts to
generate an appropriate response. This also im-
plies that we can enrich our system with new facts
without the need to retrain the full system.

We train our system using multi-task learning
(Luong et al., 2015) as a way of combining con-
versational data that is naturally associated with
external data (e.g., discussions about restaurants

1For presentation purposes, we refer to these items as
“facts”, but a “fact” here is simply any snippet of authored
text, which may contain subjective or inaccurate information.

2In our work, we use a simple keyword-based IR engine
to retrieve relevant facts from the full collection; more details
are provided in Sec. 3.

and other businesses as in Fig. 2), and less in-
formal exchanges (e.g., a response to hi, how are
you). More specifically, our multi-task setup con-
tains two types of tasks:

(1) one purely conversational, where we expose
the model without fact encoder with (S,R)
training examples, where S represents the
conversation history and R is the response;

(2) the other task exposes the full model with
({f1, . . . , fk, S}, R) training examples.

This decoupling of the two training conditions of-
fer several advantages, including: First, it allows
us to pre-train the conversation-only dataset sep-
arately, and start multi-task training (warm start)
with a dialog encoder and decoder that already
learned the backbone of conversations. Second, it
gives us the flexibility to expose different kind of
conversational data in the two tasks. Finally, one
interesting option is to replace the response in task
(2) with one of the facts (R = fi), which makes
task (2) similar to an autoencoder and helps pro-
duce responses that are even more contentful. We
will discuss the different ways we apply multi-task
learning in practice in greater detail in Sec. 4.

2.1 Dialog Encoder and Decoder
The dialog encoder and response decoder form to-
gether a sequence-to-sequence (SEQ2SEQ model
(Hochreiter and Schmidhuber, 1997; Sutskever
et al., 2014), which has been sucessfully used in
building end-to-end conversational systems (Sor-
doni et al., 2015; Vinyals and Le, 2015; Li et al.,
2016a). Both encoder and decoder are recur-
rent neural network (RNN) models: an RNN
that encodes a variable-length input string into
a fixed-length vector representation and an RNN
that decodes the vector representation into a
variable-length output string. This part of our
model is almost identical to prior conversational
SEQ2SEQ models, except that we use gated recur-
rent units (GRU) (Chung et al., 2014) instead of
LSTM (Hochreiter and Schmidhuber, 1997) cells.
Encoders and decoders in sequence-to-sequence
models sometimes share weights in monolingual
tasks, but do not do so in the present model, nor
do they share word embeddings.

2.2 Facts Encoder
The Facts Encoder of Fig. 3 is similar to the
Memory Network model first proposed by (We-
ston et al., 2014; Sukhbaatar et al., 2015). It uses



an associative memory for modeling the facts rel-
evant to a particular problem—in our case, an
entity mentioned in a conversation–then retrieves
and weights these facts based on the user input and
conversation history to generate an answer. Mem-
ory network models are widely used in Question
Answering to make inferences based on the facts
saved in the memory (Weston et al., 2015).

In our adaptation of memory networks, we use
an RNN encoder to turn the input sequence (con-
versation history) into a vector, instead of a bag of
words representation as used in the original mem-
ory network models. This enables us to better ex-
ploit interlexical dependencies between different
parts of the input, and makes this memory network
model (facts encoder) more directly comparable to
a SEQ2SEQ model.

More formally, we are given an input sen-
tence S = {s1, s2, ..., sn}, and a fact set F =
{f1, f2, ..., fk} that are relevant to the conversa-
tion history. The RNN encoder reads the input
string word by word and updates its hidden state.
After reading the whole input sentence the hidden
state of the RNN encoder, u is the summary of
the input sentence. By using an RNN encoder, we
have a rich representation for a source sentence.

Let us assume u is a d dimensional vector and
ri is the bag of words representation of fi with
dimension v. Based on (Sukhbaatar et al., 2015)
we have:

mi = Ari (1)
ci = Cri (2)

pi = softmax(uTmi) (3)

o =
k∑

i=1

pici (4)

û = o+ u (5)

Where A,C ∈ Rd×v are the parameters of the
memory network. Then, unlike the original ver-
sion of the memory network, we use an RNN de-
coder that is good for generating the response. The
hidden state of the RNN is initialized with ûwhich
is a symmetrization of input sentence and the ex-
ternal facts, to predict the response sentence R
word by word.

As alternatives to summing up facts and dia-
log encodings in equation 5, we also experimented
with other operations such as concatenation, but
summation seemed to yield the best results. The
memory network model of (Weston et al., 2014)

can be defined as a multi-layer structure. In this
task, however, 1-layer memory network was used,
since multi-hop induction was not needed.

3 Datasets

The approach we describe above is quite gen-
eral, and is applicable to any dataset that allows
us to map named entities to free-form text (e.g.,
Wikipedia, IMDB, TripAdvisor, etc.). For ex-
perimental purposes, we utilize datasets derived
from two popular social media services: Twit-
ter (conversational data) and Foursquare (non-
conversational data). Note that none of the pro-
cessing applied to these datasets is specific to any
underlying task or domain.

3.1 Foursquare
Foursquare tips are comments left by customers
about restaurants and other, usually commercial,
establishments. A large proportion of these de-
scribe aspects of the establishment, and provide
recommendations about what the customer en-
joyed (or otherwise) We extracted from the web
1.1M tips relating to establishments in North
America. This was achieved by identifying a set
of 11 likely “foodie” cities and then collecting tip
data associated with zipcodes near the city cen-
ters. While we targeted foodie cities, the dataset is
very general and contains tips many types of local
businesses (restaurants, theaters, museums, shop-
ping, etc.) In the interests of manageability for
experimental purposes, we ignored establishments
associated with fewer than 10 tips, but other exper-
iments with up to 50 tips per venue yield compa-
rable results. We further limited the tips to those
that for which Twitter handles were found in the
Twitter conversation data.

3.2 Twitter
We collected a 23M general dataset of 3-turn
conversations. This serves as a background dataset
not associated with facts, and its massive size
is key to learning the conversational structure or
backbone.

Separately, on the basis of Twitter handles
found in the Foursquare tip data, we collected ap-
proximately 1 million two-turn conversations that
contain entities that tie to Foursquare. We refer
to this as the 1M grounded dataset. Specifically,
we identify conversation pairs in which the first
turn contained either a handle of the business name
(preceded by the “@” symbol) or a hashtag that



matched a handle.3 Because we are interested in
conversations among real users (as opposed to cus-
tomer service agents), we removed conversations
where the response was generated by a user with a
handle found in the Foursquare data.

3.3 Grounded Conversation Datasets

We augment the 1M grounded dataset with facts
(here Foursquare tips) relevant to each conversa-
tion history. The number of contextually relevant
tips for some handles can sometimes be enormous,
up to 10k. To filter them based on relevance to the
input, the system uses tf-idf similarity between the
input sentence and all of these tips and retains 10
tips with the highest score.

Furthermore, for a significant portion of the
1M Twitter conversations collected using handles
found on Foursquare, the last turn was not partic-
ularly informative, e.g., when it provides a purely
socializing response (e.g., “have fun there”) rather
than a contentful one. As one of our goals is to
evaluate conversational systems on their ability to
produce contentful responses, we select a dev and
test set (4k conversations in total) designed to con-
tain responses that are informative and useful.

For each handle in our dataset we created two
scoring functions:

• Perplexity according to a 1-gram LM trained
on all the tips containing that handle.
• χ-square score, which measures how much

content each token bears in relation to the
handle. Each tweet is then scored on the basis
of the average content score of its terms.

In this manner, we selected 15k top-ranked con-
versations using the LM score and 15k using the
chi-square score. A further 15k conversations
were randomly sampled. We then randomly sam-
pled 10k conversations these data to be evaluated
by crowdsourced annotators. Human judges were
presented with the conversations and asked to de-
termine whether the response contained action-
able information, i.e., did they contain information
that would permit the respondents to decide, e.g.,
whether or not they should patronize an establish-
ment. From this, we selected the top-ranked 4k
conversations to be held out validation set and test
set; these were removed from our training data.

3This mechanism of linking conversations to facts using
exact match on the handle is high precision but low recall, but
low recall seems reasonable as we are far from exhausting all
available Twitter and Foursquare data.

4 Experimental Setup

4.1 Multi-Task Learning
We use multi-task learning with these tasks:

• FACTS task: We expose the full model with
({f1, ..., fn, S}, R) training examples.
• NOFACTS task: We expose the model with-

out fact encoder with (S,R) examples.
• AUTOENCODER task: It is similar to the

FACTS task, except that we replace the re-
sponse with each of the facts, i.e., this model
is trained on ({f1, ..., fn, S}, fi) examples.
There are n times many samples for this task
than for the FACTS task.4

The tasks FACTS and NOFACTS are representa-
tive of how our model is intended to work, but we
found that the AUTOENCODER tasks helps inject
more factual content into the response. Then, the
different variants of our multi-task learned system
exploits these tasks as follows:

• SEQ2SEQ: This system is trained on task
NOFACTS with the 23M general conversation
dataset. Since there is only one task, it is not
per se a multi-task setting.
• MTASK: This system is trained on two

instances of the NOFACTS task, respec-
tively with the 23M general dataset and
1M grounded dataset (but without the facts).
While not an interesting system in itself, we
include it to assess the effect of multi-task
learning separately from facts.
• MTASK-R: This system is trained on the NO-

FACTS task with the 23M dataset, and the
FACTS task with the 1M grounded dataset.
• MTASK-F: This system is trained on the NO-

FACTS task with the 23M dataset, and the
AUTOENCODER task with the 1M dataset.
• MTASK-RF: This system blends MTASK-F

and MTASK-R, as it incorporates 3 tasks:
NOFACTS with the 23M general dataset,
FACTS with the 1M grounded dataset, and
AUTOENCODER again with the 1M dataset.

We trained a one-layer memory network struc-
ture with two-layer SEQ2SEQ models. More
specifically, we use 2-layer GRU models with 512
hidden cells for each layer is used for encoder and
decoder, the dimensionality of word embeddings

4This is akin to an autoencoder (hence the name) as the
fact fi is represented both in the input and output, but of
course not strictly an autoencoder.



is set to 512, and the size of input/output memory
representation is 1024. We used the Adam opti-
mizer with a fixed learning rate of 0.1, with a batch
size is set to 128. All parameters are initialized
from a uniform distribution in [−

√
3/d,

√
3/d],

where d is the dimension of the parameter. Gradi-
ents are clipped at 5 to avoid gradient explosion.

Encoder and decoder use different sets of pa-
rameters. The top 50k frequent types from conver-
sation data is used as vocabulary which is shared
between both conversation and non-conversation
data. We use the same learning technique as (Lu-
ong et al., 2015) for multi-task learning. In each
batch, all training data is sampled from one task
only. For task i we define its mixing ratio value of
αi, and for each batch we select randomly a new
task i with probability of αi/

∑
j αj and train the

system by its training data.

4.2 Decoding and Reranking
We use a beam-search decoder similar
to (Sutskever et al., 2014) with beam size of
200, and maximum response length of 30. Fol-
lowing (Li et al., 2016a), we generate N -best lists
containing three features: (1) the log-likelihood
logP (R|S, F ) according to the decoder; (2) word
count; (3) the log-likelihood logP (S|R) of the
source given the response. The third feature is
added to deal with the issue of generating com-
monplace and generic responses such as “I don’t
know”, which is discussed in details in (Li et al.,
2016a). Our models often do not need the third
feature to be effective, but—since our baseline
needs it to avoid commonplace responses—we
include this feature in all systems. This yields the
following reranking score:

logP (R|S, F ) + λ logP (S|R) + γ|R|
λ and γ are free parameters, which we tune

on our development N -best lists using MERT
(Och, 2003) by optimizing BLEU (Papineni et al.,
2002a). To estimate P (S|R) we train a Sequence-
to-sequence model by swapping messages and re-
sponses. In this model we do not use any facts.

4.3 Evaluation Metrics
Following (Sordoni et al., 2015; Wen et al., 2016;
Li et al., 2016a), we use BLEU automatic eval-
uation. While (Liu et al., 2016) suggest that
BLEU correlates poorly with human judgment at
the sentence-level,5 we use instead corpus-level

5This corroborates earlier findings that accurate sentence-
level automatic evaluation is indeed difficult, even for Ma-

Perplexity
Model General Data Grounded Data

SEQ2SEQ 55.0 214.4
SEQ2SEQ-S 125.7 82.6

MTASK 57.2 82.5
MTASK-R 55.1 77.6
MTASK-F 77.3 448.8
MTASK-RF 67.2 97.7

Table 1: Perplexity of different models. SEQ2SEQ-S is a
SEQ2SEQ model that is trained on NOFACTS task with 1M
grounded dataset (without the facts).

Diversity
Model BLEU 1-gram 2-gram

SEQ2SEQ 0.55 4.14% 14.4%
MTASK 0.79 2.34% 5.9%

MTASK-F 0.38 8.35% 23.1%
MTASK-R 1.08 7.08% 21.9%
MTASK-RF 0.58 8.71% 26.0%

Table 2: BLEU-4 and lexical diversity.

BLEU, which is known to better correlate with hu-
man judgments (Przybocki et al., 2008) including
for response generation (Galley et al., 2015). We
also report perplexity and lexical diversity, the lat-
ter as a raw yet automatic measure of informative-
ness and diversity. Automatic evaluation is aug-
mented with human judgments of appropriateness
and informativeness.

5 Results

Automatic Evaluation: We computed perplex-
ity and BLEU (Papineni et al., 2002b) for each
system. These are shown in Tables 1 and 2 re-
spectively. We observe that the perplexity of
MTASK and MTASK-R models on both general
and grounded data is as low as the SEQ2SEQ mod-
els that are trained specifically on general and
grounded data respectively. As expected, injecting
more factual content into the response in MTASK-
F and MTASK-RF increased the perplexity espe-
cially on grounded data.

BLEU scores are low, but this is not untypical of
conversational systems (e.g., (Li et al., 2016a,b)).
Table 2 shows that the MTASK-R model yields a
significant performance boost, with a BLEU score
increase of 96% and 71% jump in 1-gram diversity
compared to the competitive SEQ2SEQ baseline.
In terms of BLEU scores, MTASK-RF improve-
ments is not significant, but it generates the highest

chine Translation (Graham et al., 2015), as BLEU and related
metrics were originally designed as corpus-level metrics.



1-gram and 2-gram diversity among all models.

Human Evaluation: We conducted human
evaluations using a crowdsourcing service. We
had annotators judge 500 paired conversations,
asking which is better on two parameters: appro-
priateness to the topic, and informativeness. Seven
judges were assigned to each pair. Annotators
whose variance fell greater than two standard devi-
ations from the mean variance were dropped. Ties
were permitted.

The results of annotation are show in Table 3.
On Appropriateness, no system performed sig-
nificantly better than baseline, and in two cases,
MTASK and MTASK-F, the baseline system was
significantly better. MTASK-R appears to be
slightly better than baseline in the table, but the
difference is small and not statistically significant
by conventional standards of α = 0.05. On In-
formativeness, MTASK-F and MTASK-R perform
significantly better than Baseline (p = 0.005 and
p = 0.003 respectively). Since the baseline sys-
tem outperforms MTASK-F with respect to Ap-
propriateness, this may mean that MTASK-F en-
counters difficulty representing the social dimen-
sions of conversation, but is strong on informa-
tional content. MTASK-R, on the other hand, ap-
pears to hold its own on Appropriateness while im-
proving with respect to Informativeness.

The narrow differences in averages in Table 3
tend to obfuscate the judges’ voting trends. Ac-
cordingly, we translated the scores for each output
into the ratio of judges who preferred that system
and binned their counts. The results are shown in
Figs. 4 and 5 where we compare MTASK-R with
the SEQ2SEQ baseline. Bin 7 on the left corre-
sponds to the case where all 7 judges “voted” for
the system, bin 6 to that where 6 out of 7 judges
“voted” for the system, and so on.6 Other bins are
not shown since these are a mirror image of bins
7 through 4. The distributions in Fig. 4 are more
similar to each other than in Fig. 5. indicating
that judge preference for the MTASK-R model is
relatively stronger with regard to informativeness.

6 Discussion

Figure 6 presents examples of outputs generated
by MTASK-RF model. It illustrates that responses
of our model are generally not only generally
adequate, but also more informative and useful.

6Partial scores were rounded up. This affects both sys-
tems equally.
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Figure 4: Judge preference counts (appropriateness) for
MTASK-R versus SEQ2SEQ.
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Figure 5: Judge preference counts (informativeness) for
MTASK-R versus SEQ2SEQ.

For example the first response combines “have a
safe flight”, which is safe and appropriate and as
such typical of existing neural conversational sys-
tems, but also “nice airport terminal”, which is
grounded in knowledge about the specific airport.
While our model sometimes regurgitates frag-
ments of tips in its responses, it often blends to-
gether information from various tips and the con-
versational in order to produce a response, such as
in the the 5th and last responses of the figure. The
5th is mainly influenced by two Foursquare tips7

and the model creates a fusion of the two, a kind
of text manipulation that would be difficult with
slot filling.

7 Related Work

The present work extends the data-driven
paradigm of conversation generation by injecting
knowledge from textual data into models derived
from conversational data. This paradigm was
introduced by Ritter et al. (2011) who first
proposed using statistical Machine Translation
models to generate conversational responses
from social media data. It has been was further
advanced by the introduction of neural network

7(“sit with and take a picture of the Simpsons on the
3rd floor”) and (“Check out the video feed on 6 and Simp-
sons/billiards on 3!”).



Comparison Appropriateness Informativeness

SEQ2SEQ vs MTASK 0.530 ±0.017 0.470 ±0.017 0.501 ±0.016 0.499 ±0.015
SEQ2SEQ vs MTASK-F 0.537 ±0.016 0.463 ±0.017 0.478 ±0.015 0.522 ±0.015
SEQ2SEQ vs MTASK-R 0.495 ±0.015 0.505 ±0.015 0.479 ±0.017 0.521 ±0.013
SEQ2SEQ vs MTASK-RF 0.502 ±0.015 0.498 ±0.014 0.492 ±0.013 0.508 ±0.013

Table 3: Mean differences in judgments in crowdsourced human evaluation, together with 95% confidence intervals. Differ-
ences sum to 1.0. Boldface items are significantly better (p <0.05) than their comparator.

A: Visiting the celebs at Los Angeles International Airport (LAX) - [...] w/ 70 others
B: Nice airport terminal. Have a safe flight.

A: Is that [...] in your photos? It’s on my list of places to visit in NYC.
B: Don’t forget to check out the 5th floor, while you are here, it’s a great view.

A: Live right now on [...] Tune in!!!!!
B: Listen to Lisa Paige

A: Been craving Chicken Pot Pie-who has the best? Trying [...] at [...] Must be Change of weather!
B: Love the pasta trattoria.

A: So [...] is down to one copy of Pound Foolish. I’m curious to see if they are re-ordering it.
B: Check out the video feed on 6 and take a picture of the Simpsons on the 3rd floor.

A: I wish [...] would introduce another vegetarian option besides the shroomburger. It’s delicious but kind of ridiculous.
B: This is the best j.crew in the world. Try the lemonade!

A: Just had an awesome dinner at [...] Great recommendation [...]
B: One of my favorite places I’ve ever been to in NYC. The food is great and the service is lackluster.

Figure 6: Responses produced by our knowledge-grounded neural response generation system (MTASK-RF). Entities marked
with [...] have been anonymized to avoid (potentially negative) publicity.

models (Sordoni et al., 2015; Serban et al., 2016;
Shang et al., 2015; Vinyals and Le, 2015; Li et al.,
2016a,b). The introduction of contextual models
by (Sordoni et al., 2015) is an important advance;
we build on this by incorporating context from
outside the conversation.

This work distinguishes itself from a second
paradigm of neural dialog modeling in which
question answer slots are explicitly learned from
small amounts of crowd-sourced data or customer
support logs (Wen et al., 2015, 2016). In many
respects, this second paradigm can be character-
ized as an extension of conventional dialog models
with or without statistical modelling, e.g., (Oh and
Rudnicky, 2000; Ratnaparkhi, 2002; Banchs and
Li, 2012; Ameixa et al., 2014; Nio et al., 2014).

Relevant to the current work is (Bordes and
Weston, 2016), who employ memory networks to
handle restaurant reservations, using a small num-
ber of keywords to handle entity types in a knowl-
edge base (cuisine type, location, price range,
party size, rating, phone number and address).
That approach requires a highly structured knowl-
edge base, whereas we are attempting to leverage
free-form text using a highly scalable approach in
order to learning implicit slots.

8 Conclusions

We have presented a novel knowledge-grounded
conversation engine that could serve as the core
component of a multi-turn recommendation or
conversational QA system. The model is a large-
scale, scalable, fully data-driven neural conver-
sation model that effectively exploits external
knowledge, and does so without explicit slot fill-
ing. It generalizes the SEQ2SEQ approach to
neural conversation models by naturally combin-
ing conversational and non-conversational data
through multi-task learning. Our simple entity
matching approach to grounding external informa-
tion based on conversation context makes for a
model that is informative, versatile and applicable
in open-domain systems.
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