
Adaptive Near-Duplicate Detection via Similarity Learning

Hannaneh Hajishirzi
∗

University of Illinois
201 N Goodwin Ave

Urbana, IL, USA
hajishir@uiuc.edu

Wen-tau Yih
Microsoft Research
One Microsoft Way

Redmond, WA, USA
scottyih@microsoft.com

Aleksander Kołcz
Microsoft

One Microsoft Way
Redmond, WA, USA

ark@microsoft.com

ABSTRACT
In this paper, we present a novel near-duplicate document detec-
tion method that can easily be tuned for a particular domain. Our
method represents each document as a real-valued sparse k-gram
vector, where the weights are learned to optimize for a specified
similarity function, such as the cosine similarity or the Jaccard co-
efficient. Near-duplicate documents can be reliably detected through
this improved similarity measure. In addition, these vectors can be
mapped to a small number of hash-values as document signatures
through the locality sensitive hashing scheme for efficient similar-
ity computation. We demonstrate our approach in two target do-
mains: Web news articles and email messages. Our method is not
only more accurate than the commonly used methods such as Shin-
gles and I-Match, but also shows consistent improvement across the
domains, which is a desired property lacked by existing methods.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation, Performance, Reliability

Keywords
Near-duplicate Detection, Similarity Learning, Spam Detection

1. INTRODUCTION
Inspired by the needs of many real-world tasks when handling

large document collections, near-duplicate detection (NDD) has
been an important research problem for more than a decade [4, 6,
10, 20]. In many scenarios, two documents that are not exactly
identical may still contain the same content and should be treated
as duplicates. However, which portion of the documents should
be considered important in such comparison depends on the final

∗This work was done while the author was an intern at Microsoft
Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’10, July 19–23, 2010, Geneva, Switzerland.
Copyright 2010 ACM 978-1-60558-896-4/10/07 ...$10.00.

application and may vary from task to task. For example, Web
pages from different mirrored sites may only differ in the header
or footnote zones that denote the site URL and update time [7, 17].
News articles shown on different portals could come from the same
source (e.g., Associated Press) and thus have identical content, but
can be rendered in different site templates with advertisements [20].
In both cases, a search engine should not show these near-duplicate
documents together since they carry identical information. In a
plagiarism detection scenario, the definition of near-duplicate doc-
uments may be even looser. When a portion of one document, such
as a sentence or a paragraph, is contained in another document,
these two documents could be seen as near-duplicates. In contrast,
perhaps the most extreme definition of a near-duplicate exists in an
anti-adversarial scenario. Spam messages that belong to the same
campaign may look very different because spammers often need to
randomize the messages by obfuscating terms or adding unrelated
paragraphs to pass the filter [13, 14, 16]. However, as long as the
core payload text (e.g., a URL pointing to the spammer’s site) is
identical, two email messages are treated as near-duplicates.

There are two main considerations when solving an NDD prob-
lem: efficiency and accuracy. Applications of NDD typically need
to handle a very large collection of documents. A practical algo-
rithm will need to determine whether a document is a duplicate of
some other documents in the repository in real-time [17]. As a re-
sult, efficiency has been the main focus of existing popular NDD
approaches, where various techniques of generating short signa-
tures using hash functions (e.g., [4, 2, 5]) and pruning inverted
index searching (e.g., [20]) were invented. In contrast, the prob-
lem of how to improve NDD accuracy has received less attention.
Most existing NDD methods encode documents as sets of token
sequences (i.e., k-grams). In such binary vector representation, all
the elements, no matter where the corresponding fragments come
from (e.g., header, body or navigation block) of the document, are
treated equally when comparing two documents. Although heuris-
tic approaches have been developed for selecting important terms
using IDF values (e.g., I-Match [6]) or special patterns based on
stopwords (e.g., SpotSigs [20]), such approaches do not perform
consistently across different domains. As a result, manually tuning
the configuration or even selecting the right NDD method becomes
a necessity to achieve acceptable accuracy for the target domain.

In this paper, we introduce a novel Adaptive Near-Duplicate De-
tection (ANDD) method to address the above issues. Given a small
set of labeled documents that denote the near-duplicate clusters,
ANDD learns a vector representation for documents in the target
domain. Each element in the vector corresponds to a short token
sequence (i.e., k-gram) associated with a real-valued weight that in-
dicates its importance when determining whether two document are
near-duplicate. Similarity scores, such as cosine or Jaccard, calcu-

419

lated based on this new vector representation provide higher near-
duplicate detection accuracy. Such improvement does not come at
the cost of sacrificing the computational efficiency, as established
signature generation techniques can be easily adapted to reduce the
dimensionality of the original vector representation.

Our contributions in this work are twofold. First, by observing
that existing NDD approaches consist of two main steps, raw vector
construction and fast similarity computation, we identify the for-
mer is critical to achieve better accuracy. Hashing schemes or trun-
cated inverted index provide fast ways to approximate the similarity
score calculated using the raw vectors. Theoretically, the prediction
performance is upper bounded by the quality of the original rep-
resentation. As we show experimentally, the accuracy difference
between different hashing schemes is often limited and much less
than the gain brought by a better document representation. Second,
we extend a recently proposed similarity learning framework [21]
to learn the vector construction. This allows ANDD to easily cap-
ture the implicit and often vague notion of “near-duplicate” through
the editorial data for the target domain. As a result, comparable and
often higher accuracy can be achieved compared to existing NDD
methods, and such advantage is consistent across domains.

2. RELATED WORK
In this section, we briefly describe the representative NDD ap-

proaches with focus on their unique characteristics.

2.1 Shingling
As one of the earliest NDD methods, the Shingling [4, 2] al-

gorithm views each document as a sequence of tokens and first
encodes a document as a set of unique k-grams (i.e., contiguous
subsequences of k tokens). For the ease of further processing, each
k-gram is encoded by a 64-bit Rabin fingerprint [19] and is called
a shingle. The similarity between two documents is measured us-
ing the Jaccard coefficient between the shingle vectors. Documents
with high similarity scores are considered near-duplicate.

One issue of applying the Jaccard similarity directly is the vari-
able and potentially large size of the shingle sets, as they grow
linearly in the number of document tokens. Broder et al. [4] intro-
duced the technique of min-wise independent permutations to solve
this problem by mapping each set of shingles to an m-dimensional
vector, with m typically much smaller than the original number of
tokens in a document. In this process, m different hash functions
h1, · · · , hm are created and applied to all shingles. Let the set of
shingles of the target document d be S(d) = {s1, s2, · · · , sn}.
The j-th element in the final vector is defined as the minimum hash
value of hj . Namely, minl∈{1..n} hj(sl).

Each m-dimensional vector can be further mapped to a smaller
set of super shingles by first separating the elements into m′ dis-
joint subsets of equal size and then fingerprinting each subset of
elements using a different hashing function. This process effec-
tively reduces the dimensionality of each vector from m to m′, and
thus saves the storage space and also speeds up the computation.

Notice that in the standard shingling methods, the construction
of document signature vectors is purely syntactic – all the k-grams
in the documents are treated equally. Alternatively, Hoad and Zo-
bel [11] experimented with various strategies of selecting k-grams
when encoding shingles, such as based on their TFIDF scores.

2.2 I-Match
Unlike Shingling, which creates a sequence of hash values based

on a random sample of k-grams of the original document, I-Match
maps each individual document into a single hash value using the
SHA1 hash algorithm. Two documents are considered near-duplicate

if and only if their hash values are identical [6]. The signature gen-
eration process of I-Match views a document as a single bag of
words (i.e., terms, unigrams). In addition, only the “important”
terms are retained in the bag. It first defines an I-Match lexicon
L based on collection statistics of terms using a large document
corpus. A commonly used option is the inverse document fre-
quency (IDF), where L consists of only terms with mid-range IDF
values. For each document d that contains the set of unique terms
U , the intersection S = L∩U is used as the set of terms represent-
ing d for creating the signature.

One potential issue with I-Match occurs when the retained word
bag S is small (i.e., |S| ¿ |U |). Because the documents are ef-
fectively represented using only a small number of terms, different
documents could be mistakenly predicted as near-duplicates eas-
ily. To deal with such cases, a constraint is placed on the mini-
mum length of a document for which a valid signature can be pro-
duced. To make I-Match more robust to such false-positive errors,
Kolcz et al. propose using m randomized lexicons concurrently
instead of one, following the same I-Match signature generation
process [15, 14]. As a result, an m-dimensional vector is used to
present a document. Two documents are considered near-duplicate
only if they have enough number of signatures matched.

2.3 Random projection
As pointed out by Charikar [5], the min-wise independent per-

mutations method used in Shingling is in fact a particular case
of a locality sensitive hashing (LSH) scheme introduced by In-
dyk and Motwani [12]. The probability that the two hash values
match is the same as the Jaccard similarity of the two k-gram vec-
tors. In contrast, the random projection based approach proposed
by Charikar [5] and later applied to the web document domain by
Henzinger [10] is another special LSH scheme for the cosine simi-
larity based on term (i.e., unigram) vectors. According to the imple-
mentation described in [10], this algorithm generates a binary vec-
tor with m bits to represent documents using the following steps.
First, each unique term in the target document is projected into an
m-dimensional real-valued random vector, where each element is
randomly chosen from [−1, 1]. All the random vectors generated
from the terms in this document are then added together. The final
m-dimensional binary vector representing this document is derived
by setting each element in the vector to 1 if the corresponding real
value is positive and 0 otherwise.

Noticing that the Shingling method often generates more false-
positive cases, Henzinger invented a hybrid approach that applies
Charikar’s random projection method to the potential near-duplicate
pairs detected by Shingling [10]. As a result, the precision is sig-
nificantly improved without sacrificing too much recall.

2.4 SpotSigs
In determining which k-grams in a document should be used for

creating signatures, Theobald et al.’s SpotSigs method is perhaps
the most creative and interesting one [20]. When developing near-
duplicate detection methods for clustering news articles shown on
various Web sites, they observe that stopwords seldom occur in the
unimportant template blocks such as navigation sidebar or links
shown at the bottom of the page. Based on this observation, they
first scan the document to find stopwords in it as anchors. k tokens
right after an anchor excluding stopwords are grouped as a special
k-gram, or so called a “spot signature” in their terminology. The
raw representation of each target document is therefore a set of
spot signatures. To some extent, the construction of spot signatures
can be viewed as a simple and efficient heuristic to filter terms in
template blocks so that the k-grams are extracted from the main

420

content block only. Once the spot signatures have been extracted,
the same techniques of using hash functions as seen in other NDD
methods can be directly applied to reduce the length of the spot
signature vectors. In addition, Theobald et al. propose an efficient
algorithm for directly computing the Jaccard similarity measures
on the raw spot signature vectors, with the help of a pruned inverted
index data structure [20].

3. ADAPTIVE NDD
Although their algorithm designs seem different, all the NDD

methods surveyed in Sec. 2 can be described within a unified frame-
work that consists of two main steps: (1) generating k-gram vec-
tors from documents and (2) computing the similarity score effi-
ciently based on the desired function operating on the vectors. Two
documents are considered near-duplicate if their similarity score is
above a predefined threshold. In order to have an efficient NDD
method with improved prediction accuracy, our strategy is to fol-
low the same pipeline but to ensure that the raw k-gram vector is
a good representation of the document for computing reliable sim-
ilarity scores. It will be a real-valued vector where the weights of
the active k-grams are learned from labeled document pairs.

There are two main differences in our approach, compared to
most existing NDD algorithms. First, each k-gram in the vector is
associated with a real weight, which is used in computing docu-
ment similarity scores. In contrast, existing methods typically de-
compose documents into bags of k-grams (i.e., binary vectors). Al-
though some weighting schemes (e.g., removing terms based on idf
values) may be used to retain only a subset of k-grams, all the active
k-grams are treated equally during signature generation and/or sim-
ilarity computation. As in many NDD applications, not all terms in
the same document are equally important (e.g., some may occur
in the title; others may appear in the navigation sidebar), treating
terms indistinguishably important will obviously impact the accu-
racy of the NDD predictions [6].

The second difference of our approach is that we leverage la-
beled data in the target domain to learn these weights. Unlike ex-
isting NDD methods, which are more or less static, the learning
approach provides a principled way to adjust the model to better
fit the target domain. Specifically, we extend a recently proposed
term-weighting learning framework [21] by using general k-gram
vectors instead of just unigrams and by optimizing for different
similarity functions such as the Jaccard coefficient. In what fol-
lows, we describe the learning approach in detail and demonstrate
how the better document representation can be encoded to signa-
tures that support efficient similarity computation.

3.1 Learning real-valued k-gram vectors
We first formally define the raw document representation in our

approach, the real-valued k-gram vector. Let V = {g1, g2, · · · , gn}
be the vocabulary that contains all possible k-grams occurring in all
documents. Each document d is mapped to a sparse vector v, which
consists of all the k-grams G ⊆ V that can be found or selected in
d. For each k-gram g ∈ G, its score is decided by a function that
depends on the k-gram g and/or the document d: gwλ̄(g, d), where
λ̄ is the model parameters learned from the labeled data.

Conceptually, this weighting function indicates how important
the k-gram is with respect to the document, when computing the
similarity between two vectors. While there are many choices of
the functional form, we use a simple linear combination of features
extracted for each k-gram gi occurring in document d:

gwλ̄(gi, d) =
∑

j

λj · φj(gi, d), (1)

Feature Note
Bias 1 for all examples
TF Frequency of the k-gram in the document
DF Document frequency of the k-gram

DF-Avg Average of document frequencies of terms in the k-gram
DF-Med Median of document frequencies of terms in the k-gram

QF Query log frequency of the k-gram
Loc The location the k-gram in the document
Len Length of the document
Cap Whether the first term of the k-gram is capitalized

InTitle Whether the k-gram appears in the title or email subject
InURL Whether the k-gram is part of the URL of the document

Table 1: Features used in ANDD. DF-Avg and DF-Med are only
used when k > 1. InURL is used only for HTML documents.

where φj is the j-th feature function and λj is the corresponding
model parameter. The goal of the training procedure is thus to de-
termine λ̄ so that two near-duplicate documents can have a high
similarity score.

The learning framework enables a principled way of incorporat-
ing additional information regarding the raw text in features. For
each k-gram, the features used are listed in Table 1. Note that these
features are all very easy to compute. Some are statistics derived
from scanning the whole document once (e.g., Loc and Len). Oth-
ers can be retrieved from a direct table look-up (e.g., DF and QF).

Given two documents dp and dq , their similarity score is given
by a specified similarity function fsim operating on their corre-
sponding k-gram vectors vp and vq . We develop models for two
commonly used similarity functions in the task of NDD, cosine and
the (extended) Jaccard coefficient in this work.

cos(vp,vq) =
vp · vq

‖vp‖‖vq‖ (2)

jacc(vp,vq) =
vp · vq

‖vp‖2 + ‖vq‖2 − vp · vq
(3)

Having human subjects score the importance of each k-gram that
leads to a robust similarity measure is a difficult annotation task.
Instead, we assume that we are given clusters of documents as the
labeled data. Documents belonging to the same clusters are near-
duplicate and unrelated otherwise. How to use such labeled doc-
uments to train the model parameters depends on the learning set-
ting. We choose the setting of learning the preference ordering be-
cause of its slightly superior performance reported previously [21].
In this setting, the absolute similarity score of two documents is not
important. Instead, we would like the model to assign higher scores
to near-duplicate documents, compared to other unrelated pairs of
documents. Due to the lack of space, we omit the derivations of
gradients for both cosine and Jaccard functions here.

A training set of N examples in this setting is formally denoted
as {(y1, (xa1 , xb1)), (y2, (xa2 , xb2)), · · · , (yN , (xaN , xbN))}, where
xak = (dpak

, dqak
) and xbk = (dpbk

, dqbk
) are two pairs of doc-

uments and yk ∈ {0, 1} indicates the pairwise order preference,
where 1 means xak should be ranked higher than xbk and 0 other-
wise. The loss function we used for this setting is:

L(λ̄) =

N∑

k=1

log(1 + exp(−yk ·∆k − (1− yk) · (−∆k))), (4)

where ∆k is the difference of the similarity scores of two document
pairs, computed based on the corresponding vectors. Namely,

∆k = fsim(vpak
,vqak

)− fsim(vpbk
,vqbk

)

The loss function (Eq. 4) is regularized by adding a term α
2
||w||2.

421

We use L-BFGS to minimize the loss function for its guarantee to
find a local minimum. We omit the derivations of gradients for both
cosine and Jaccard functions due to lack of space.

3.2 Generating document signatures
In many applications, the NDD method needs to handle a large

collection of documents. Therefore, being able to efficiently deter-
mine whether the similarity score of two documents is high enough
to declare they are near-duplicate is not only crucial but also a re-
quirement to a practical NDD algorithm. Based on the traditional
vector space model and cosine similarity, one simple way to de-
tect near duplicates is to sequentially submit each document in the
collection as a query to search for highly similar documents in the
collection. By the use of inverted index as adopted in most search
engines, this kind of document search is sub-linear (to the num-
ber of documents in the collection) in time complexity in practice,
however it can be O(n2) in the worst case.

Recall that the weights in each vector can be interpreted as the
importance scores of the corresponding k-grams, the straightfor-
ward way to shrink the vector size is thus by eliminating k-grams
with low weights. Efficient similarity computation can be sup-
ported by techniques like pruned inverted index [20]. While this
could be an effective strategy as shown in our experiment (see
Sec. 4.2.2), having variable sizes of document representation is
less appealing in terms of engineering. Meanwhile, although low-
weight k-grams are not as important, they still contain information
that could affect the similarity measure. In contrast, signature gen-
eration techniques map vectors into strings of a fixed number of
bits. Even with the same complexity order, the basic bit compar-
ison operation is much faster than comparing whether two strings
(i.e., terms) or two integers (i.e., term id) are identical. Moreover,
efficient sub-linear algorithms exist for similarity search in the sig-
nature space [5, 12, 1].

In this paper, we rely on locality sensitive hashing (LSH) schemes
to map the raw vector to a sequence of hash values as the document
signature. An LSH scheme has the following defining property:

DEFINITION 3.1 ([5, 12]). Let fsim(·, ·) be a given similar-
ity function defined on the collection of objectsO. A distribution on
a family H of hash functions operating on O is a locality sensitive
hashing scheme if for x, y ∈ O,

Probh∈H[h(x) = h(y)] = fsim(x, y)

Using this scheme, hash functions h1, h2, · · · , hm drawn from H
are applied to raw vectors to encode them into signatures of m
hash values. The similarity score of two documents is derived by
counting the number of identical hash values, divided by m. As
m increases, this scheme will approximate asymptotically the true
similarity score given by the specific function fsim. Since the sim-
ilarity functions that our learning method optimizes for are cosine
and Jaccard, we apply the corresponding LSH schemes when gen-
erating signatures.

For the cosine function, we use the random hyperplane based
hash function, which is the essential part of Charikar’s random pro-
jection algorithm [5]. For a given collection of vectors in Rd, each
hash function is created by first choosing a random vector r̄ from
the d-dimensional Gaussian distribution. When applied to a vector
ū ∈ Rd, the corresponding binary hash function hr̄ returns 1 if the
dot product r̄ · ū ≥ 0; otherwise it’s 0. For vectors ū and v̄, this
LSH scheme has the following property:

Prob[hū = hv̄] = 1− cos−1(ū, v̄)/π,

which has a monotonic mapping of the cosine function.

When applying this scheme to our k-gram vectors, each k-gram
in the vocabulary is associated with m different random numbers
drawn from the Gaussian distribution. The signature of each vec-
tor/document is a bit-string of m bits. The value of the i-th bit
is decided by the sign of summing the product of the i-th random
number and the weight of each k-gram. Notice that this scheme
works for both binary and real vectors, and the number of bits (i.e.,
m) does not need to increase when handling real vectors.

For the Jaccard function, the LSH scheme that we use is the
min-hash [12, 8] function, which are designed originally for bi-
nary vectors. To handle our real k-gram vectors, we first transfer
each real-valued weight to a binary vector as suggested by Gionis
et al. [8]. The weight of each k-gram in the vector is multiplied
by a big integer and then the number is bucketed and mapped to a
bit-string. The original real vector thus becomes a binary vector by
concatenating these bit-strings.

It is impractical to choose a hash function h uniformly among
all the possible functions. Therefore, we limit the search among a
specific class of functions (linear in our experiments) as suggested
by [3, 20]. Each hash function hi in this family is defined by two
random numbers αi and βi that are smaller than the length of the
mapped binary vectors. Let X be the set of indices of the “1”
bits in vector ū. The i-th hash value of this vector is defined as
hi(ū) = minx∈X(αi · x + βi mod p) where p is the first prime
number bigger than the length the mapped binary vector. Similarly,
a complete document signature consists of m such min-hash val-
ues, and the Jaccard coefficient is approximated by the fraction of
identical hash values in the corresponding signature vectors.

4. EXPERIMENTS
In this section, we compare our near-duplicate detection methods

with other state-of-the-art approaches on two important tasks: De-
duping Web news articles and email campaign detection. Although
in both tasks, the goal to identify semantically identical documents
is the same, the syntactic presentation of near-duplicates in fact dif-
fers significantly from one domain to the other. As we demonstrate,
our approach can adapt to the target domain easily while existing
methods often suffer from such domain change and their predic-
tions cannot be consistently reliable. Other practical issues when
applying our method, such as the number of training examples it
needs and whether it increases the computational cost during run-
time, will be discussed at the end of this section.

4.1 De-duping Web news articles
In this set of experiments, we focus on determining whether

news articles shown on different sites are identical and thus are
potentially from the same source. As observed by Theobald et
al. [20], Web sites showing these articles have their own unique
style or template. These news pages may differ substantially in
their presentation and only the core content can decide whether they
are near-duplicate articles. As a result, correctly distinguishing the
important portion of the text and encoding such information in the
document representation become a key to improve the accuracy for
this task. Below, we start from describing the data used for this
set of experiments and the detailed experimental settings. We then
compare our method with others in detail.

4.1.1 Experimental setting
The dataset we used in this task is the gold set of near-duplicate

news articles collected by Theobald et al. [20], which contains
2,160 news articles crawled in 2006. These articles are manually
clustered into 68 directories, where documents in the same direc-
tory have the same content news and are considered near-duplicate.

422

Unigram (k = 1) Trigram (k = 3)
Cosine Jaccard Cosine Jaccard

ANDD-Raw 0.956 0.952 0.936 0.910
TFIDF 0.884 0.874 0.875 0.873
Binary 0.861 0.852 0.869 0.867

SpotSigs 0.953 0.952 - -

Table 2: MAX F1 of ANDD-Raw k-gram vectors with k ∈
{1, 3} using the cosine and Jaccard similarity functions, com-
pared to other k-gram weighting functions (binary and TFIDF)
in the News domain.

We use this dataset for a five-run experimental setting. In each run
of the experiment, we divide these clusters randomly into two dis-
joint sets of equal size; one set of clusters of documents is used for
training and the other is used for testing. In other words, no cluster
has documents in both the training and testing sets.

We construct our training instances as pairs of documents drawn
from the training set. Each instance is associated with a binary
label. If two documents are from the same cluster and thus near-
duplicates, then the label is positive; otherwise, it’s negative. No-
tice that the number of negative instances in the training set is much
more than the number of positive instances. We balance the class
distribution by randomly selecting the same number of negative in-
stances as positive instances from the current set. 80,000 random
pairs of these instances are used to train the model.

Likewise, testing instances are all the pairs of documents created
from the testing set. To mimic the true distribution, we do not bal-
ance the number of positive and negative instances as done previ-
ously and evaluate various methods using all the testing instances.
In particular, we evaluate the accuracy by the number of these in-
stances with their labels correctly predicted. Following [20], we
report the averaged Max F1 scores of our experimental results as
the major evaluation metric.

4.1.2 Raw similarity measure
We first show the quality of the similarity measures computed on

the k-gram vectors that include all the k-grams, when used for de-
tecting near-duplicate documents. As discussed previously, exist-
ing NDD methods essentially approximate the raw similarity mea-
sure efficiently by either using the hashing trick or inverted index.
In other words, the quality of the raw similarity score dictates the
final NDD prediction accuracy.

We compare several configurations of the raw similarity mea-
sures based on three variables: k ∈ {1, 3} (i.e., unigram or tri-
gram), similarity function fsim ∈ {cosine, jaccard} and the k-
gram weighting function, which can be binary, TFIDF or learned
(denoted as ANDD-Raw). Table 2 presents the averaged Max F1

scores by varying the decision threshold when using the similar-
ity measures of all the configurations. As can be observed from
the table, regardless of the choice of k and the similarity function,
ANDD-Raw yields a better similarity measure for near-duplicate
detection. Their Max F1 scores are statistically significantly bet-
ter than their TFIDF counterparts. Not surprisingly, without prun-
ing k-grams using heuristics such as idf values, the raw similarity
measure based on binary vector representation leads to the low-
est Max F1 scores in our experiments. Again, the differences are
statistically significant1. We also found that on this dataset, the co-
sine function performs slightly better than the Jaccard coefficient,

1We run a student’s paired-t test on individual scores from the five
rounds of the compared two configurations. The results are consid-
ered statistically significant when the p-value is lower than 0.05.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 1000

A
ve

ra
ge

d
M

ax
 F

1
S

co
re

Number of Bits

ANDD-LSH-Cos
ANDD-Raw-Cos

Figure 1: Averaged Max F1 scores of ANDD-LSH-Cosine for
the News domain when encoded using different numbers of
bits.

although the differences are not statistically significant. This phe-
nomenon is shown on both unigram (k = 1) and trigram (k = 3)
representations, where using unigram derives better NDD results.
It is also worth noticing that with a small set of simple features, our
approach can perform comparable to SpotSigs, which is based on a
heuristic designed specifically for this problem domain.

4.1.3 Signature generation
While the raw similarity measures derived from ANDD-Raw

k-gram vectors can achieve highly accurate results, reducing the
size of such document representation is essential to efficient com-
putation. In this section, we first apply locality sensitive hash-
ing schemes described earlier to map unigram vectors to signa-
tures with different lengths and examine the degree of performance
degradation in terms of NDD accuracy. We then compare our ap-
proach with other signature-based NDD algorithms.

Taking the unigram ANDD-Raw vectors where the weights are
learned to optimize for the cosine function, we map each document
to a signature of m bits via the LSH-Cosine scheme. The similarity
score of two documents is then determined by the number of iden-
tical bits their corresponding signatures share, divided by m. We
vary m from 64 to 4096 and report the averaged Max F1 scores of
the 5 rounds in Figure 1. As can be observed from the figure, the
accuracy of the NDD prediction based on the bit-string signatures
improves quickly as the number of bits (i.e., m) increases. The per-
formance degradation compared to the raw vector representation is
limited when m is not too small. In fact, when m ≥ 512, the
difference in Max F1 when compared to either the raw vector or
the SpotSigs method is not statistically significant. In practice, the
choice of m is determined by the trade-off between the efficiency
constraint and the desired prediction accuracy, as longer signatures
take more storage space and processing time.

We conduct similar experiments applying the LSH-Jaccard scheme
to the unigram ANDD-Raw vectors where the weights are learned
to optimize for the Jaccard function. Each vector is mapped to a set
of m min-hash values. Because each min-hash value takes roughly
20 bits to store, to get roughly the same size of signatures, we vary
m from 8 to 256 and report the averaged Max F1 scores of the 5
rounds in Figure 2. Compared with the LSH-Cosine scheme, LSH-
Jaccard is less stable and also needs a larger size of signature to
approximate the raw similarity measure. In this set of experiments,
we found that the signature needs to have at least 80 min-hash val-
ues to achieve a Max F1 score that is not statistically significantly
different from the one derived from the original Jaccard score.

We next compare our approach with other signature-based NDD
methods, including Shingles, Charikar’s random projection algo-
rithm and I-Match. Following the setting chosen by Henzinger [10],

423

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 100

A
ve

ra
ge

d
M

ax
 F

1
S

co
re

Number of min-hash functions

ANDD-LSH-Jacc
ANDD-Raw-Jacc

Figure 2: The averaged Max F1 scores of ANDD-LSH-Jaccard
for the News domain when encoded using different numbers of
min-hash functions.

Method IDF Bytes Prec Rec F1

ANDD-LSH-Cos [0,1] 48 0.965 0.923 0.943
ANDD-LSH-Jacc [0,1] 200 0.957 0.907 0.931

Shingles [0.2,0.85] 672 0.886 0.867 0.876
Charikar [0.2,0.85] 48 0.868 0.777 0.820

1-Shingles [0.2,0.85] 48 0.994 0.013 0.026
I-Match [0.4,0.75] 24 0.983 0.001 0.002

Table 3: Results of signature-based NDD methods for the News
domain. ANDD-LSH-Cos achieves the best Max F1 despite its
short signature length.

we use 384 bits (48 bytes) to encode the signatures in ANDD-LSH-
Cos and Charikar’s random projection method, and represent each
document using 84 shingles (672 bytes) and 6 super shingles (48
bytes) for the Shingles and 1-Shingles methods. Because the uni-
gram model performs better than trigram model, we set the window
size in Shingles to 1. For ANDD-LSH-Jacc, each signature consists
of 80 min-hash values (200 bytes) since it gives the best trade-off
between accuracy and storage based on Figure 2. I-Match uses only
one hash-value for each document and the length is 24 bytes.

Table 3 summarizes the performance of these algorithms in terms
of the averaged Max F1 scores of the five rounds, as well as the cor-
responding precision and recall numbers. Among them, ANDD-
LSH-Cos achieves the best Max F1 score despite the fact that its
signature length is relatively short. The Jaccard-based counterpart
achieves pretty competitive result, but with longer signatures. A
regular Shingles method with 84 hash values performs better than
Charikar’s random projection approach with 384 bits on this do-
main. Both have Max F1 scores higher than 0.8. Surprisingly, de-
spite having impeccable precision, both 1-Shingles (at least 1 of the
6 super shingles matches) and I-Match achieve extremely low re-
call. Consequently, the F1 scores are also low. This might be due to
the fact that we judge the accuracy using all document pairs, rather
than whether each document is put in the same cluster.

Notice that the additional features other than TF and DF signif-
icantly boost the performance. Even though the Max F1 scores of
ANDD-LSH are lower than ANDD-Raw, they are still much higher
than those derived from raw TFIDF vectors (see Table 2).

4.2 Detecting email campaigns
Another application of near-duplicate document detection is cap-

turing email campaigns, which has been shown an effective tech-
nique for collaborative spam filtering and identifying abused email
accounts [9, 18, 15, 13]. An email campaign is a large volume

of semantically identical mail sent to a large number of recipients
within a short period of time. Although some of these campaigns
may be legitimate marketing newsletters, a big portion of them are
in fact spam. To a large email service provider, such as Hotmail
or GMail, as long as there are a few users reporting junkmail mes-
sages, all other messages from the same campaign can be quickly
classified as spam and removed from the inboxes of their recipients.

Unfortunately, reliably detecting spam campaigns is not trivial.
In order to escape from such spam filtering scheme, spammers typ-
ically randomize their messages by obfuscating words or phrases in
the email subject or body, or by appending random, unrelated para-
graphs at the end of the mail. Figure 3 shows an example of two
messages from the same campaign. As we can see here, the notion
of “near-duplicate” in this domain becomes quite different from the
Web domain – two dissimilar messages may in fact come from the
same campaign because they convey the same payload content.

4.2.1 Experimental setting
To judge the effectiveness of different NDD algorithms when

applied to a practical problem such as spam campaign detection,
it is best to evaluate them in a realistic setting. We experiment
with our approach using a set of 11,108,298 outbound messages
served by Hotmail, randomly sampled during the period between
Dec 10th, 2008 and Jan 24th, 2009. Detecting outbound email cam-
paigns serves two purposes: reducing outbound spam and capturing
abused accounts. Because legitimate marketing campaigns are usu-
ally sent from the same sender, duplicate messages sent by multiple
unrelated users can therefore be reliably classified as spam and in-
tercepted by an outbound spam filter. In addition, accounts that
send these messages are very likely to be abused or hijacked by
adversaries. Detecting email campaigns in outbound messages can
help find and suspend these compromised accounts.

Given the large number of messages, one difficulty we encoun-
tered is how to manually find and label campaign messages in this
collection. In order to efficiently construct the “gold” set of email
campaigns, we first ran both I-Match and Shingling on this dataset.
Two messages were treated near-duplicate and put in the same clus-
ter (i.e., campaign) if either I-Match or Shingling predicted so. As
a result, we derived 31,512 initial clusters in total. Not surpris-
ingly, email campaigns detected in this way were not totally correct
and contain quite a few false-positive and false-negative cases. To
further clean the campaign labels, we randomly selected 875 clus-
ters with at least two messages and corrected their labels manually.
Since in reality, a spam detection system can only be trained us-
ing historical messages, we mimicked this scenario by splitting the
clusters based on the time their messages were sent. 400 clusters
(2,256 email messages) sent between Dec 10th, 2008 and Jan 5th,
2009 were used for training, and the remaining 475 clusters (658
email messages) sent between Jan 5th, 2009 and Jan 24th, 2009
were used for testing.

4.2.2 Raw similarity measure
Table 4 shows the results of the similarity measures based on the

unigram vectors. Contrary to the experiments on the news data,
here we found that the Jaccard coefficient performs better than the
cosine function. As for the comparisons against other weighting
schemes, when the weights are learned using labeled data, the qual-
ity of the raw similarity measure is still better than TFIDF, which
is again better than using the binary vector representation.

Interestingly, we also found that the NDD accuracy of SpotSigs
drops sharply on this dataset. After carefully examining the uni-
grams it selects, we realized that although its heuristics of selecting
the first non-stop words after some anchor stopwords works great

424

Subject: Outstaindng prcies and huge disuconts

sowftare you’ve ever watned
www.freesoftwarepark.com

sowftare you’ve ever watned
www.freesoftwarepark.com
Invite your mail contacts to join your friends list with
Windows Live Spaces. It’s easy! Try it!

Subject: Dolwnoadable software, 80% discounts

sofwtare you’ve ever watned
www.computercodepark.com

sofwtare you’ve ever watned
www.computercodepark.com
Get news, entertainment and everything
you care about at Live.com. Check it out!

Figure 3: Two email messages from the same campaign.

Cosine Jaccard
ANDD-Raw 0.674 0.700

TFIDF 0.625 0.626
Binary 0.622 0.622

SpotSigs 0.257 0.258

Table 4: MAX F1 of ANDD-Raw k-gram vectors with k = 1
using the cosine and Jaccard similarity functions, compared to
other k-gram weighting functions (binary and TFIDF) in the
Email domain.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50

M
ax

 F
1

S
co

re

Number of Active Terms

ANDD
TFIDF

SpotSigs

Figure 4: Max F1 vs. the number of active terms in the Email
domain for ANDD, TFIDF, and SpotSigs.

on the Web news crawls, it is much less effective on email for two
reasons. Email messages are typically shorter than news articles
and are written somewhat informally. As a result, stopwords occur
less frequently, and each email consists only 5.7 Spot signature in
average. In addition, we hypothesize that the SpotSigs heuristic ef-
fectively removes the terms in the template blocks such as ads or
navigation bar, which typically don’t exist in email. It is therefore
not clear whether SpotSigs can capture the main content any more.

To validate these conjectures, we conduct an experiment to test
the performance degradation when removing some unigrams of the
vectors based on their importance, judged by the weighting score.
Figure 4 shows the Max F1 scores given by the cosine similarity
based on ANDD-Raw and TFIDF vectors with different numbers
of active unigrams in them. Although the averaged number of ac-
tive unigrams is 53.7, the performance of our method does not suf-
fer much even when the number of active unigrams is restricted to
10. When the number of active unigrams is 5, the Max F1 scores
of ANDD and TFIDF are 0.621 and 0.525, respectively. Both out-
perform SpotSigs substantially.

4.2.3 Signature generation
Table 5 reports the prediction accuracy of various NDD meth-

ods in terms of Max F1, along with the corresponding precision
and recall. Although the Jaccard similarity on the ANDD-Raw
unigram vectors performs better than the cosine version, such ad-
vantage is not fully carried after dimensionality reduction using
the LSH scheme. As a result, ANDD-LSH-Cos achieves slightly

Method IDF Bytes Prec Rec F1

ANDD-LSH-Cos [0,1] 48 0.723 0.599 0.656
ANDD-LSH-Jacc [0,1] 160 0.821 0.532 0.646

Charikar [0,1] 48 0.972 0.425 0.591
Shingles [0,1] 672 0.752 0.502 0.602

1-Shingles [0,1] 48 0.827 0.410 0.548
I-Match [0.4,0.75] 24 0.874 0.382 0.532

Table 5: Results of signature-based NDD methods for the Email
domain. ANDD-LSH-Cos achieves the best Max F1 despite its
short signature length.

higher Max F1 score than ANDD-LSH-Jacc, and both outperform
Charikar’s random projection method. Due to the selection bias
introduced when sampling email messages for annotation, it is not
entirely fair to compare our approach with Shingles or I-Match. We
list the results of these algorithms here for reference only.

4.3 Discussion
As shown previously, our ANDD approach not only outperforms

existing methods, but can also adapt to a different domain better.
Its advantages are mainly due to learning from the labeled training
documents and from extracting more information from documents.
In what follows we discuss how these two extra needs may impact
the deployment of our algorithm in practice.

One natural question for a learning approach such as ours is how
many training documents are needed to achieve satisfactory accu-
racy. To answer this question, we repeat our experiments using the
news data set by reducing the number of training documents and
record the corresponding Max F1 scores. Although in our regu-
lar setting we use 1,005 labeled documents in average for training,
surprisingly we found that the algorithm can in fact train a model
that achieves the asymptotic result even with a small number of la-
beled documents. Figure 5 shows the learning curve of the model
on unigrams. The initial model of random parameter values gives
a 0.856 Max F1 score, which is worse than the cosine similarity
based on binary unigram vector (see Table 2). With as few as 60
documents, it already improves the Max F1 score to 0.953, which
is very close to 0.956, the Max F1 score of our regular model. Such
a sharp learning curve may be due to the fact that we are learning
only a few model parameters (23 in these experiments). However,
we want to point out that manually tuning these model parameters
is still difficult and may not be much better than the initial random
model weights (from preliminary experiments not reported here).
Also, adding more training documents still improves the perfor-
mance although the gain is relatively small.

Another practical concern of deploying our approach is the run-
time efficiency. Thanks to the effective LSH scheme, our approach
can encode documents in short bit-string signatures that preserve
the good accuracy result of the raw vectors. The storage require-
ment of our method remains the same and standard indexing tech-
niques applied to other NDD approaches can be adapted here as
well (notice that training the k-gram weighting model is done of-

425

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0 50 100 150 200 250 300

A
v
e
r
a
g
e
d

M
a
x

F
1

S
c
o
r
e

Number of Training Documents

ANDD
Init
Full

Figure 5: Max F1 vs. number of training samples compared to
the random initialization (init) and fully learned model (full).
Accuracy is only lowered slightly as the number of training ex-
amples decreases.

fline). The only place that our algorithm may need slightly more
computational time is feature extraction. Fortunately, we can al-
ready achieve good performance based on straightforward features
listed in Table 1. Among them, the document frequency and query
log frequency can be found using a simple table lookup operation.
Other features such as term frequency and term position can be
determined when the parser or tokenizer finishes scanning the doc-
ument. Therefore, such additional computation cost should be neg-
ligible. Of course, adding more domain-dependent features is usu-
ally the most effective way to improve a learning system in prac-
tice. Whether more such features should be added will depend on
the trade-off between the computational cost of extracting such fea-
tures and its potential benefits to the final NDD prediction accuracy.

5. CONCLUSIONS
In this paper, we presented a novel adaptive near-duplicate de-

tection (ANDD) method that achieves high accuracy consistently
across different target domains. Observing that the raw document
representation dictates the prediction accuracy of an NDD algo-
rithm, we extend a recently proposed term-weighting framework [21]
to learn general k-gram vectors and to optimize for a different sim-
ilarity function such as the Jaccard coefficient. Each document is
represented by an informative real k-gram vector. Similarity mea-
sures computed on these vectors can reliably predict near-duplicate
documents. To the best of our knowledge, our method is the first
that introduces similarity learning to the NDD problem. As demon-
strated by the experiments done on two different problem domains,
the Web news dataset and outbound email messages, our method
can easily leverage a small number of labeled near-duplicate docu-
ment clusters, and provide more accurate prediction results without
tedious parameter tuning for the target domain. When this approach
is applied to large-scale problems, efficiency is preserved by map-
ping the vector representation to short signatures with the help of
effective locality sensitive hashing schemes.

In the future, we would like to explore different possibilities of
feature engineering and model improvement to further enhance our
approach. For instance, lexical features such as the words contained
in each k-gram can be easily added. Information from deeper doc-
ument analysis modules, if can be efficiently executed during run-
time, will be used for feature extraction as well. Applying our NDD
method to more applications for Web search and online advertising
is also on our agenda.

6. ACKNOWLEDGMENTS
We thank Chris Meek and Susan Dumais for many useful discus-

sions. We are also grateful to Martin Theobald for sharing the data
and the SpotSigs package. We also would like to thank anonymous
reviewers for their helpful comments.

7. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions.
Communications of the ACM, 51(1):117–122, 2008.

[2] A. Z. Broder. Identifying and filtering near-duplicate
documents. In COM ’00, pages 1–10. Springer-Verlag, 2000.

[3] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permutations.
Journal of Computer and System Sciences, 60:630–659,
2000.

[4] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. Comput. Netw. ISDN Syst.,
29(8-13):1157–1166, 1997.

[5] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proceedings of the 34th Annual
ACM Symposium on Theory of Computing, 2002.

[6] A. Chowdhury, O. Frieder, D. Grossman, and M. C.
McCabe. Collection statistics for fast duplicate document
detection. ACM Trans. Inf. Syst., 20(2):171–191, 2002.

[7] D. Fetterly, M. Manasse, and M. Najork. On the evolution of
clusters of near-duplicate web pages. In LA-WEB ’03, 2003.

[8] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In VLDB ’99, 1999.

[9] R. J. Hall. A countermeasure to duplicate-detecting
anti-spam techniques. Technical report, AT&T, 1999.

[10] M. Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In SIGIR ’06, pages
284–291, New York, NY, USA, 2006. ACM.

[11] T. C. Hoad and J. Zobel. Methods for identifying versioned
and plagiarized documents. Journal of the American Society
for Information Science and Technology, 54(3):203–215,
2003.

[12] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In
Proceedings of 30th STOC, pages 604–613, 1998.

[13] A. Kolcz and A. Chowdhury. Hardening fingerprinting by
context. In CEAS ’07, 2007.

[14] A. Kolcz and A. Chowdhury. Lexicon randomization for
near-duplicate detection with I-match. Journal of
Supercomputing, 45(3):255–276, 2008.

[15] A. Kolcz, A. Chowdhury, and J. Alspector. Improved
robustness of signature-based near-replica detection via
lexicon randomization. In KDD ’04, 2004.

[16] D. Lowd and C. Meek. Good word attacks on statistical spam
filters. In CEAS’05, 2005.

[17] G. S. Manku, A. Jain, and A. Das Sarma. Detecting
near-duplicates for web crawling. In WWW ’07, 2007.

[18] V. V. Prakash and A. O’Donnell. Fighting spam with
reputation systems. Queue, 3(9):36–41, 2005.

[19] M. Rabin. Fingerprinting by random polynomials. Report
TR-1581, Harvard University, 1981.

[20] M. Theobald, J. Siddharth, and A. Paepcke. Spotsigs: robust
and efficient near duplicate detection in large web
collections. In SIGIR ’08, pages 563–570, 2008.

[21] W. Yih. Learning term-weighting functions for similarity
measures. In Proc. of EMNLP-09, 2009.

426

