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Abstract

Measuring the relevance between the query and paid search ads is an important
problem to ensure the overall positive search experience. In this paper, we study
experimentally the effectiveness of various document similarity models based
solely on the content analysis of the query and ad landing page. Our approaches
focus on two different aspects that aim to improving the document representa-
tion: one produces a better term-weighting function and the other projects the raw
term-vectors to the concept space. Both models are discriminatively trained and
significantly outperform the baseline approach. When used for filtering irrelevant
ads, combining these two models gives the most gain, where the uncaught bad ads
rate has reduced 28.5% when the false-positive rate is 0.1.

1 Introduction

Paid search advertising is the main revenue source that supports modern commercial search engines.
When a user issues a query to a search engine, the search result page consists the organic links,
as well as short textual ads on the mainline and sidebar. Although from the user’s perspective,
both organic results and paid search ads should respond to the search intent and provide relevant
information, their generation processes are very different. While presenting relevant Web pages
should be the only objective of the retrieval algorithm behind organic search, ad selection is heavily
influenced by the market behaviors of advertisers. Generally, advertisers create short textual ads
with a list of bid keywords and specified matching schemes. Only ads with keywords matching the
query have the chance to enter the auction process, which decides the final ads to show.

Although advertisers should select keywords that are highly relevant to their ads and landing pages,
naively trusting the auction and matching mechanism could allow showing irrelevant ads due to
different reasons. For example, inexact matching schemes (e.g., phrase and broad match) only
partially match the bid keyword to the query, which may be semantically distant. Another example is
that adversarial advertisers may game the system by bidding on lots of cheap but irrelevant keywords
to increase the traffic to their sites with relatively low cost. To ensure satisfactory user experience,
it is thus important to have an ad relevance judgment component in the ad selection pipeline. Such
component can be used simply as an ad filter, which only allows the ads with high relevance scores
entering the auction process. More ambitiously, a good ad relevance measure can be used to replace
the cumbersome keyword–query matching scheme and increase the ad coverage by selecting more
ads to participate in the auction.

Previous work on ad relevance follows the vector space model paradigm in information retrieval
and focuses on constructing suitable term-vectors representing the query and ad-text. For example,
Broder et al. [2] leverage the search engine and use the pseudo relevance feedback technique to
expand queries. Choi et al. [3] further enhance such approach by incorporating content from the
ad landing page when creating term-vectors for the ads. The relevance function of a pair of query
and ad is simply the cosine similarity score of the two corresponding vectors. The main advantage
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of this vector space approach is its computational efficiency when handling large-scale data in real-
time. For instance, ad selection beyond keyword matching can be done via inverted index, pre-built
offline on query and ad vectors. The content-based similarity score can also be combined later with
other signals (e.g., advertiser reputation or user click features) to evaluate the relevance of ads from
a pre-selected and much smaller candidate set.

In this paper, we aim to learn a better vector representation of queries and ads from simple content
analysis so that a pre-selected similarity function (e.g., cosine) can become a reliable relevance mea-
sure. Instead of exploring various unsupervised heuristics of term weighting and selection in previ-
ous work, we exploit the annotated pairs of queries and ads and adapt two recently proposed vector
learning approaches. The first approach, TWEAK [10], provides a simple means to incorporate
various term-level features and results in a much better term-weighting function compared to using
fixed formulas like TFIDF. The second approach, S2Net [11], maps the original term-vector repre-
sentation to a much smaller but dense concept vector space, which allows matching of semantically
related words, and improves the relevance measure even after dimensionality reduction. While both
approaches significantly outperform the TFIDF cosine baseline in our experiments on real-world
data, the best result comes from the combination of these two, which reduces the false-negative rate
by 28.5% when the false-positive rate is 0.1 in an ad filtering scenario.

The rest of this paper is organized as follows. Sec. 2 gives the problem definition and describes our
approaches in detail. Our experimental validation is provided in Sec. 3. Finally, Sec. 4 presents
some related work and Sec. 5 concludes the paper.

2 Problem & Approaches

Informally, the problem we are trying to solve can be described as follows. Assume that we are
given a set of query–ad pairs with human relevance judgement as training data. The goal here is to
learn a function that maps the query and ad to vectors, so that their similarity score (cosine in this
paper) can be used as a good relevance measure – e.g., the score of an “excellent” query–ad pair will
be higher than the “bad” ones. Because both queries and ads contain only a few words and may not
provide enough content, we expand them first to “documents” as the raw input. On the query side,
we applied the same query expansion method described in [8, 2]. Each query in our data set was
first issued to the Bing search engine. The top 100 search result snippets are concatenated to form
a corresponding “pseudo-document”. On the ad side, we used its landing page. Taking advantage
of the human judgement labels, we experiment with two new discriminative approaches to learn the
vector representation from documents. One can be viewed as an enhanced term-vector generation
process and the other produces a low-rank representation.

2.1 Learning Enhanced Term Vectors

The most widely used document representation for similarity measures is arguably the bag-of-words
term-vectors. Suppose V = {t1, t2, ⋅ ⋅ ⋅ , tn} is the pre-defined vocabulary that consists of a set of all
possible terms (e.g., tokens, words) that may occur in each document. The vector that represents a
document d is then [s1, s2, ⋅ ⋅ ⋅ , sn]T , where si is the weight of term ti. Such vectors are typically
very sparse as si is set to 0 when ti does not occur in d. Otherwise, si is often determined by some
fixed weighting formula such as TFIDF (e.g., si = tf(ti, d) ⋅ log(N/df(ti)), whereN is the number
of documents in the corpus). Because the term weights dictate the quality of the similarity function
operating on the term-vectors, here we adapt TWEAK [10] to learn a better weighting function by
incorporating more term-level information using our labeled data.

Suppose that each term ti from document d is associated with a short feature vector,
(�1(ti, d), �2(ti, d), ⋅ ⋅ ⋅ , �m(ti, d)), where �j is the function that captures some term-level infor-
mation, such as its position in the document or whether it is capitalized. The new term-weighting
function is a linear combination of these features, namely s′i = tw(ti, d) ≡

∑m
j=1 �j�j(ti, d),

where �’s are the model parameters. Because the human relevance judgement labels are defined on
pairs of queries and documents, we cannot use the non-existent “correct” term-weighting scores to
train the model. Instead, the difference between the label and similarity score based on the current
model will be back-propagated to tune the parameters in each training iteration. More detail on the
loss function and training procedure will be described in Sec. 2.3.
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2.2 Learning Concept Vectors

When applying an inner-product like similarity functions such as cosine or the Jaccard coefficient,
one major weakness of the term-vector representation is that different terms, regardless of how
semantically related they are, will not be matched. As an illustrative example, two semantically very
close term vectors {buy:0.3, pre-owned:0.5, car: 0.4} and {purchase:0.4, used:0.3, automobile:0.2}
will have 0 cosine score because they do not contain any identical terms. Obviously, having a better
term-weighting function will not fix this issue as long as the choice of active terms remains the same.

A common solution to this problem is to map the original term-vectors to some “concept space”,
so that semantically close words will be captured by the same concept [6, 7, 1]. Instead of using a
generative model, we aim to learn the projection matrix discriminatively by adapting a newly pro-
posed Siamese neural network model, S2Net [11]. Formally, given a set of term-vectors representing
queries or ads, we would like to learn a matrix An×k so that a term-vector s = [s1, s2, ⋅ ⋅ ⋅ , sn]T

will be mapped to a k-dimensional vector AT s, where k ≪ n. In this low-rank representation, the
association between each concept element and the original terms is described in the corresponding
column of A. Although the functional form of this model, the matrix A, is identical to the projec-
tion matrix used in latent semantic analysis (LSA) [6], the model generation process is completely
different. By tuning the model (i.e., all the k ⋅ n entries in A) to have a better similarity score from
the concept vectors, such dimensionality reduction technique can in fact increase the performance
significantly.

2.3 Model Training

Suppose sq and sa are the concept or term vectors of the query–ad pair (q, a). Then the co-
sine similarity score is simΛ(q, a) ≡ sq⋅sa

∣∣sq∣∣⋅∣∣sa∣∣ , where Λ denotes the model parameters (i.e.,
�’s in TWEAK and A in S2Net). Assume that we map the human judgement label of (q, a)
to y ∈ [−1, 1], then one simple loss function we can use is the mean-squared error, defined as
LMSE(y, simΛ(q, a)) = 1

2 (y − simΛ(q, a))2.

However, in either the ad filtering or ranking scenarios, the ranking order of the ads or query–ad
pairs is usually more important than the absolute score. We therefore use a pairwise loss function
for training the models instead. Given two pairs (q1, a1) and (q2, a2) where the former is annotated
as more relevant than the latter, let Δ be the difference of their similarity scores. Namely, Δ =
simΛ(q1, a1)− simΛ(q2, a2). The loss function L we use is: L(Δ) = log(1 + exp(−Δ)), where
 is the scaling factor that magnifies Δ from [−2, 2] to a larger range. This loss function can be
shown to upper bound the pairwise accuracy. It can also be regularized further by adding a term
like �
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∑
j �

2
j or �2 ∣∣A∣∣

2. In the experiments in this paper,  is set to 10 and � is 0.01 for TWEAK.
S2Net is regularized using a simple early stop scheme tuned based on the validation set. Optimizing
the model parameters can be done using gradient based methods, such as stochastic gradient decent
or L-BFGS.

3 Experiments

In this section, we present our experiments of applying the above similarity learning models in the
ad relevance problem, including the data collection process, tasks and evaluation metrics, as well as
the detailed results.

3.1 Data & Tasks

The similarity models discussed above are evaluated on a proprietary dataset made available by
Microsoft AdCenter. The dataset consists of 12,481 unique queries that were randomly sampled
from the Bing search engine logs. For each query, a number of top ads ranked according to their
monetization values or cost per impression (CPI) are selected. Ads with higher CPI have higher
chance to be shown to search users, and thus are more sensitive to classification error. Ads with
invalid or unreachable landing pages are removed from the dataset. This results in a total number of
681,100 query-ad pairs in the dataset, of which 446,781 unique pairs of queries and landing pages
are found. Note that duplicates exist because multiple ads may point to the same landing page.

3



Feature Remark
TF term-frequency
DF document-frequency
Loc the position of the first occurrence of the term
Len the length of the document
QF query log frequency

IsCap whether any occurrence of the term is capitalized
InQry whether the term is part of the query
InUrl whether the term is part of the URL

InAnchorText whether the term is in an anchor text
InHtmlTitle whether the term occurs in the title

InMetaDescription whether the term appears in the meta-description section
InMetaKeywords whether the term appears in the meta-keywords section

Emphasized whether the term is emphasized in some special fonts

Table 1: Term-level features used in the TWEAK model. The QF feature is the number of times the
term is seen as a query in search logs during an 18-month period. The logarithmic values of TF, DF,
Len and QF are also used as features. InQry is only used for the query side. InUrl, InAnchorText,
InHtmlTitle, InMetaDescription, InMetaKeywords and Emphasized are only used on ad landing
pages.

Each query-ad pair is then manually labeled using a scheme that describes the relationship between
concepts (or sets). In this scheme, each document is regarded as a concept, and the relationship
between two concepts is one of the five relations, namely same, subset, superset, overlap, or disjoint.
In our experiment, when the task is a binary classification problem, pairs labeled as same, subset, or
superset (23% of the dataset) are considered relevant, pairs labeled as disjoint (60% of the dataset)
are considered irrelevant, and others (17% of the dataset) are ignored. When pairwise comparisons
are needed in either training or evaluation, the relevance order is same > subset = superset >
disjoint.

The dataset is split into training, validation and test sets by queries. Ads selected for a particular
query always appear in only one of these three sets. This avoids the same query-landing page pair
being used in both training and validation/test sets, which would happen if one randomly splits
query-ad pairs in the dataset. In our experiments, 40% of the queries are reserved for training, 30%
for validation and the remaining 30% for testing. The validation set is used to tune some hyper-
parameters such as the number of training iterations and the weight of the regularization term.

As mentioned in Sec. 2, we use the search snippets to form “pseudo-documents” for queries and the
landing pages for ads as the raw input documents. Our vocabulary set contains 29,854 words and
is determined using a document frequency table derived from a large web corpus. Only words with
counts larger than a pre-selected threshold are retained. When applying the TWEAK model to learn
the term-weighting function, the features we used are summarized in Tab. 1.

We test our models in two different application scenarios. The first is to use the ad relevance measure
as an ad filter. When the relevance score of an ad is below a pre-selected decision threshold, this
ad is considered not relevant to the query and will be filtered before going to the auction process.
As this setting is close to the typical anomaly detection problem, we present the Receiver Operat-
ing Characteristic (ROC) curves of tested models to show the trade-off between false-positive (i.e.,
mistakenly removed good ads) and true-positive (i.e., filtered bad ads), as well as the corresponding
AUC scores as the evaluation metrics. The second one is the commonly ranking scenario as used in
organic search, where the ads with keywords that match the query are purely selected and ranked by
their relevance score. In this scenario, we use the standard NDCG scores as the evaluation metric.

3.2 Results

We compare four different configurations in our experiments. Served as our baseline, TFIDF is the
basic term-vector representation with the TFIDF weighting (tf ⋅log(N/df)). TWEAK has exactly the
same terms in each TFIDF vector, but the weights are determined by the linear function of features
in Tab. 1 with model parameters learned from the training data. Taking these two different term-
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Figure 1: The ROC curves of four different vector representations when the corresponding cosine
scores are used as ad filters. False-positive rate indicates the percentage of mistakenly filtered rele-
vant ads and true-positive rate is the percentage of successfully filtered irrelevant ads.

TFIDF TWEAK S2Net TWEAK + S2Net
AUC 0.861 0.888 0.892 0.898

NDCG@1 0.825 0.859 0.855 0.870
NDCG@3 0.854 0.883 0.883 0.893
NDCG@5 0.876 0.899 0.901 0.909

Table 2: The AUC and NDCG scores of the cosine similarity scores on different vector represen-
tations. The dimensionality parameter k is 1000 for S2Net. Except for the NDCG scores between
TWEAK and S2Net, the differences between any two methods in various metrics are statistically
significant.

vectors as input, we applied S2Net to learn the projection matrices to map them to a k-dimensional
space, denoted as S2Net and TWEAK+S2Net, respectively.

When the cosine scores of these vector representations are used as ad filters, their ROC curves (fo-
cusing on the low false-positive region) are shown in Fig. 1. It can be clearly observed that the simi-
larity scores computed based on the learned vectors indeed have better quality, compared to the raw
TFIDF representation. Among them, TWEAK and S2Net perform quite similarly, where S2Net has
slight advantage when the false-positive rate is below 0.15. Not surprisingly, our best result comes
from the combination of these two models. At the 0.1 false-positive rate point, TWEAK+S2Net can
filter 28.5% more irrelevant ads compared with TFIDF.

Similar trend is also reflected on the AUC scores and NDCG numbers, presented in Tab. 2.
S2Net has a higher AUC score compared to TWEAK, but is inferior in NDCG@1 and NDCG@3.
TWEAK+S2Net is a clear winning approach, and has higher scores in both AUC and NDCG. Again,
all the learning models result in stronger similarity scores than simply using TFIDF term vectors. All
comparisons except for the NDCG scores between TWEAK and S2Net are statistically significant.
For AUC, we randomly split the data into 50 subsets and ran a paired-t test between the correspond-
ing AUC scores of two methods. For NDCG scores, we compared the DCG scores per query of the
compared models using the paired-t test. The difference is considered statistically significant when
the p-value is less than 0.01 after the Bonferroni correction.

Although for efficiency reason, ideally we would like the dimensionality of the projected concept
vectors as small as possible. However, the quality of such representation usually degrades as well.
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TFIDF PCA1000 S2Net100 S2Net300 S2Net500 S2Net750 S2Net1000
AUC 0.861 0.848 0.855 0.879 0.880 0.888 0.892

NDCG@1 0.825 0.815 0.843 0.852 0.856 0.860 0.855
NDCG@3 0.854 0.847 0.871 0.879 0.881 0.884 0.883
NDCG@5 0.876 0.870 0.890 0.897 0.899 0.902 0.901

Table 3: The AUC and NDCG scores of S2Net at different k (dimensionality) values. TFIDF and
PCA (k = 1000) are used as baselines. The differences in AUC for any two methods, except
for S2Net300 and S2Net500, are statistically significant. For the NDCG scores, all S2Net models
outperform TFIDF and PCA statistically significantly. The differences among S2Net300, S2Net500,
S2Net750 and S2Net1000 are not statistically significant.

It is thus interesting to know the best trade-off point between these two variables. We conduct this
study by using the raw TFIDF term-vectors as input for the S2Net model with various k values,
and the results in terms of AUC and NDCG are shown in Tab. 3. In addition, we also compared
the results with the commonly used dimensionality reduction technique, PCA. As can be found in
the table, the performance of S2Net easily surpasses TFIDF when k = 300. As k increases, the
performance improves quite consistently as well. Notice that even with k = 1000, PCA is not doing
better than S2Net (k = 100), which uses only one tenth of the space, and is still inferior to TFIDF.

4 Related Work

Our approach on learning vector representation for similarity measures is very related to the work of
distance metric learning [5]. As the computational complexity of learning a complete Mahalanobis
matrix is at least O(n2), where n is the vocabulary size, directly applying them to the problems in
the text domain is not practical. Although learning a low-rank matrix has been suggested [4, 9], our
previous study has shown that the TWEAK/S2Net approach can perform better [11]. On the content
analysis side, Choi et al. [3] used the cosine score to judge the ad relevance, but applied document
summarization techniques to identify important portions in the ad landing page to construct the
vector. Such information can easily be incorporated in our model and could potentially improve the
performance.

5 Conclusions

In this paper, we explore the effectiveness of two recently proposed similarity models, TWEAK and
S2Net, for measuring paid-search ad relevance. Both approaches aim to learn new vector representa-
tions of documents to improve the quality of the target similarity score (e.g., cosine) operating on the
vectors. When used in the scenarios of ad filtering and ranking as relevance measures, the learned
vector representations lead to significantly better results compared to the typical TFIDF term-vector
construction. As the two approaches focus on different aspects and are complementary to each other,
we found that combining these two methods produces the most performance gain.

The promising results from this initial experimental study trigger several interesting research direc-
tion for the future work. For example, the current combination approach treats the TWEAK and
S2Net models separately and chains them in a sequential fashion. Training these two sets of model
parameters could be a more natural approach to further enhance the overall model performance. On
the feature side, improving the relevance measure by incorporating more information in the model,
such as ad-text, advertiser reputation and deeper query and landing page analysis is also on our
agenda.
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