
An Imitation Game for Learning Semantic Parsers from User Interaction

Ziyu Yao1, Yiqi Tang1, Wen-tau Yih2, Huan Sun1, Yu Su1

{yao.470, tang.1466, sun.397, su.809}@osu.edu
scottyih@fb.com

1The Ohio State University
2Facebook AI Research, Seattle

Abstract

Despite the widely successful applications,
building a semantic parser is still a tedious pro-
cess in practice with challenges from costly
data annotation and privacy risks. We sug-
gest an alternative, human-in-the-loop method-
ology for learning semantic parsers directly
from users. A semantic parser should be in-
trospective of its uncertainties and prompt for
user demonstrations when uncertain. In do-
ing so it also gets to imitate the user behavior
and continue improving itself autonomously
with the hope that eventually it may become as
good as the user in interpreting their questions.
To combat the sparsity of demonstrations, we
propose a novel annotation-efficient imitation
learning algorithm, which iteratively collects
new datasets by mixing demonstrated states
and confident predictions and retrains the se-
mantic parser in a Dataset Aggregation fash-
ion (Ross et al., 2011). We provide a theoret-
ical analysis of its cost bound and also empir-
ically demonstrate its promising performance
on the text-to-SQL problem.1

1 Introduction

Semantic parsing has found tremendous applica-
tions in building natural language interfaces that
allow users to query data and invoke services with-
out programming (Woods, 1973; Zettlemoyer and
Collins, 2005; Berant et al., 2013; Yih et al., 2015;
Su et al., 2017; Yu et al., 2018). The life cycle of a
semantic parser typically consists of two stages: (1)
bootstrapping, where we keep collecting labeled
data via trained annotators and/or crowdsourcing
for model training until it reaches commercial-
grade performance (e.g., 95% accuracy on a sur-
rogate test set), and (2) fine-tuning, where we de-
ploy the system, analyze the usage, and collect and

1Code will be available at https://github.com/
sunlab-osu/MISP.

Does the system need to consider any conditions about
the table attribute "School/Club Team"?

No.

What condition does "jalen rose" imply?

(1) "Player".

 Thank you! Query result: 1. Executed SQL query:

25 Aleksandar Radojević Serbia Barton CC (KS) Center
5 Jalen Rose United States Michigan Guard-Forward

...

How many schools or teams had jalen rose?

User Interaction

Feedback Collection

No. Player Nationality School/Club Team Position

SELECT	COUNT(School/Club	Team)	WHERE	School/Club	Team	...

Question = "How many schools or teams had jalen rose?"

SELECT	COUNT(School/Club	Team)	WHERE	Player	...

SQL query:

(System Uncertainty)

SELECT	COUNT(School/Club	Team)	WHERE	Player="jalen	rose"

I'm confused. Please help me out! Should I consider
conditions about any of the following table attributes?
(1) "Player" (2) "Nationality" (3) "Position" (4) None of

the above options.

Figure 1: A semantic parser proactively interacts with
the user in a friendly way to resolve its uncertainties.
In doing so it also gets to imitate the user behavior and
continue improving itself autonomously with the hope
that eventually it may become as good as the user in
interpreting their questions.

annotate new data to address the identified prob-
lems or emerging needs. However, it poses sev-
eral challenges for scaling up or building semantic
parsers for new domains: (1) high bootstrapping
cost because mainstream neural parsing models are
data-hungry and the annotation cost of semantic
parsing data is relatively high, (2) high fine-tuning
cost from continuously analyzing usage and an-
notating new data, and (3) privacy risks arising
from exposing private user data to annotators and
developers (Lomas, 2019).

In this paper, we suggest an alternative method-
ology for building semantic parsers that could po-
tentially address all the aforementioned problems.
The key is to involve human users in the learning
loop. A semantic parser should be introspective
of its uncertainties (Dong et al., 2018) and proac-

https://github.com/sunlab-osu/MISP
https://github.com/sunlab-osu/MISP

tively prompt for demonstrations from the user,
who knows the question best, to resolve them. In
doing so, the semantic parser can accumulate tar-
geted training data and continue improving itself
autonomously without involving any annotators or
developers, hence also minimizing privacy risks.
The bootstrapping cost could also be significantly
reduced because an interactive system needs not to
be almost perfectly accurate to be deployed. On
the other hand, such interaction opens up the black
box and allows users to know more about the rea-
soning underneath the system and better interpret
the final results (Su et al., 2018). A human-in-the-
loop methodology like this also opens the door for
domain adaptation and personalization.

This work builds on the recent line of research on
interactive semantic parsing (Li and Jagadish, 2014;
Chaurasia and Mooney, 2017; Gur et al., 2018;
Yao et al., 2019b). Specifically, Yao et al. (2019b)
provide a general framework, MISP (Model-based
Interactive Semantic Parsing), which handles un-
certainty modeling and natural language genera-
tion. We will leverage MISP for user interaction to
prove the feasibility of the envisioned methodology.
However, existing studies only focus on interacting
with users to resolve uncertainties. None of them
has fully addressed the crucial problem of how to
continually learn from user interaction, which is
the technical focus of this study.

One form of user interaction explored for learn-
ing semantic parsers is asking users to validate the
execution results (Clarke et al., 2010; Artzi and
Zettlemoyer, 2013; Iyer et al., 2017). While ap-
pealing, in practice it may be a difficult task for
real users because they would not need to ask the
question if they knew the answer in the first place.
We instead aim to learn semantic parsers from fine-
grained interaction where users only need to an-
swer simple questions covered by their background
knowledge (Figure 1). However, learning signals
from such fine-grained interactions are bound to
be sparse because the system needs to avoid ask-
ing too many questions and overwhelming the user,
which poses a challenge for learning.

To tackle the problem, we propose NEIL, a novel
aNnotation-Efficient Imitation Learning algorithm
for learning semantic parsers from such sparse,
fine-grained demonstrations: The agent (seman-
tic parser) only requests for demonstrations when
it is uncertain about a state (parsing step). For cer-
tain/confident states, actions chosen by the current

policy are deemed correct and are executed to con-
tinue parsing. The policy is updated iteratively in
a Dataset Aggregation fashion (Ross et al., 2011).
In each iteration, all the state-action pairs, demon-
strated or confident, are included to form a new
training set and train a new policy in a supervised
way. Intuitively, using confident state-action pairs
for training mitigates the sparsity issue, but it may
also introduce training bias. We provide a theoreti-
cal analysis and show that, under mild assumptions,
the impact of the bias and the quality of the NEIL

policy can be controlled by tuning the policy ini-
tialization and confidence estimation accuracy.

We also empirically compare NEIL with a num-
ber of baselines on the text-to-SQL parsing task.
On the WikiSQL (Zhong et al., 2017) dataset, we
show that, when bootstrapped using only 10% of
the training data, NEIL can achieve almost the
same test accuracy (2% absolute loss) as the full
expert annotation baseline, while requiring less
than 10% of the annotations that the latter needs,
without even taking into account the different unit
cost of annotations from users vs. domain experts.
We also show that the quality of the final policy
is largely determined by the quality of the initial
policy, which provides empirical support for the
theoretical analysis. Finally, we demonstrate that
NEIL can generalize to more complex semantic
parsing tasks such as Spider (Yu et al., 2018).

2 Related Work

Interactive Semantic Parsing. Our work extends
the recent idea of leveraging system-user interac-
tion to improve semantic parsing on the fly (Li
and Jagadish, 2014; He et al., 2016; Chaurasia and
Mooney, 2017; Su et al., 2018; Gur et al., 2018;
Yao et al., 2019a,b; Elgohary et al., 2020; Zeng
et al., 2020; Semantic Machines et al., 2020). Gur
et al. (2018) built a neural model to identify and cor-
rect error spans in generated queries via dialogues.
Yao et al. (2019b) formalized a model-based intel-
ligent agent MISP, which enables user interaction
via a policy probability-based uncertainty estima-
tor, a grammar-based natural language generator,
and a multi-choice question-answer interaction de-
sign. More recently, Elgohary et al. (2020) crowd-
sourced a dataset for fixing incorrect SQL queries
using free-form natural language feedback. Seman-
tic Machines et al. (2020) constructed a contextual
semantic parsing dataset where agents could trigger
conversations to handle exceptions such as ambigu-

ous or incomplete user commands. In this work, we
seek to continually improve semantic parsers from
such user interaction, a topic that is not carefully
studied by the aforementioned work.

Interactive Learning from Feedback. Learning
interactively from user feedback has been studied
in many NLP tasks (Sokolov et al., 2016; Wang
et al., 2016, 2017; Nguyen et al., 2017; Gao et al.,
2018; Abujabal et al., 2018; Hancock et al., 2019;
Kreutzer and Riezler, 2019). Most relevant to us,
Hancock et al. (2019) constructed a self-feeding
chatbot that improves itself from user satisfied
responses and their feedback on unsatisfied ones.

In the field of semantic parsing, Clarke et al.
(2010); Artzi and Zettlemoyer (2013); Iyer et al.
(2017) learned semantic parsers from binary user
feedback on whether executing the generated query
yields correct results. However, often times (es-
pecially in information-seeking scenarios) it may
not be very practical to expect end users able to
validate the denotation correctness (e.g., consider
validating an execution result “103” for the ques-
tion “how many students have a GPA higher than
3.5” from a massive table). Active learning is also
leveraged to save human annotations (Duong et al.,
2018; Ni et al., 2020). Our work is complemen-
tary to this line of research as we focus on learning
interactively from end users (not “teachers”).

Imitation Learning. Traditional imitation learn-
ing algorithms (Daumé et al., 2009; Ross and Bag-
nell, 2010; Ross et al., 2011; Ross and Bagnell,
2014) iteratively execute and train a policy by col-
lecting expert demonstrations for every policy de-
cision. Despite its efficacy, the learning demands
costly annotations from experts. In contrast, we
save expert effort by selectively requesting demon-
strations. This idea is related to active imitation
learning (Chernova and Veloso, 2009; Kim and
Pineau, 2013; Judah et al., 2014; Zhang and Cho,
2017). For example, Judah et al. (2014) assumed a
“teacher” and actively requested demonstrations for
most informative trajectories in the unlabeled data
pool. Similar to us, Chernova and Veloso (2009)
solicited demonstrations only for uncertain states.
However, their algorithm simply abandons policy
actions that are confident, leading to sparse train-
ing data. Instead, our algorithm utilizes confident
policy actions to combat the sparsity issue and is
additionally provided with a theoretical analysis.

Concurrent with our work, Brantley et al. (2020)
studied active imitation learning for structured pre-

diction tasks such as named entity recognition. Our
work instead focuses on semantic parsing, which
presents a unique challenge of integrality, i.e., the
output sequence (a semantic parse) could only be
correct as a whole (as opposed to partially cor-
rect) in order to yield the correct denotation. We
therefore propose a new cost function (Section 5)
to theoretically analyze the factors that affect the
efficacy of learning semantic parsers via imitation.

3 Preliminaries

Formally, we assume the semantic parsing model
generates a semantic parse by executing a sequence
of actions at (parsing decisions) at each time step
t. In practice, the definition of an action depends
on the specific semantic parsing model, as we will
illustrate shortly. A state st is then defined as a
tuple of (q, a1:t−1), where q is the initial natural
language question and a1:t−1 = (a1, ..., at−1) is
the current partial parse. In particular, the initial
state s1 = (q, φ) contains only the question. De-
note a semantic parser as π̂, which is a policy func-
tion (Sutton and Barto, 2018) that takes a state st
as input and outputs a probability distribution over
the action space. The semantic parsing process
can be formulated as sampling a trajectory τ by
alternately observing a state and sampling an ac-
tion from the policy, i.e., τ = (s1, a1 ∼ π̂(s1),
..., sT , aT ∼ π̂(sT)), assuming a trajectory length
T . The probability of the generated semantic parse
becomes: pπ̂(a1:T |s1) =

∏T
t=1 pπ̂(at|st).

An interactive semantic parser typically follows
the aforementioned definition and requests the
user’s validation of a specific action at. Based
on the feedback, a correct action a∗t can be inferred
to replace the original at. The parsing process con-
tinues with a∗t afterwards.

In this work, we adopt MISP (Yao et al., 2019b)
as the back-end interactive semantic parsing frame-
work, given that it is a principled framework for
this purpose and can generalize to various kinds
of semantic parsers and logical forms. However,
we note that our proposed algorithm is not limited
to MISP; it instead depicts a general algorithm for
learning semantic parsers from user interaction. We
illustrate the application of MISP to a sketch-based
parser, SQLova (Hwang et al., 2019), as follows.
More details and another example of how it applies
to a non-sketch-based parser EditSQL (Zhang et al.,
2019) can be found in Appendix B.1.

Example. Consider the SQLova parser, which

generates a query by filling “slots” in a pre-
defined SQL sketch “SELECT Agg SCol
WHERE WCol OP VAL”. To complete the
SQL query in Figure 1, it first takes three
steps: SCol=“School/Club Team” (a1),
Agg=“COUNT” (a2) and WCol=“School/Club
Team” (a3). MISP detects that a3 is uncertain
because its probability is lower than a pre-specified
threshold. It validates a3 with the user and corrects
it with WCol=“Player” (a∗3). The parsing
continues with OP=“=” (a4) and VAL=“jalen
rose” (a5). Here, the trajectory length T = 5.

4 Learning Semantic Parsers from User
Interaction

In this section, we present NEIL, an aNnotation-
Efficient Imitation Learning algorithm that trains
a parser from user interaction, without requiring a
large amount of user feedback (or “annotations”).
This property is particularly important for end user-
facing systems in practical use. Note that while
we apply NEIL to semantic parsing in this work, in
principle it can also be applied to other structured
prediction tasks (e.g., machine translation).

4.1 An Imitation Learning Formulation

Under the interactive semantic parsing frame-
work, a learning algorithm intuitively can aggre-
gate (st, a

∗
t) pairs collected from user interactions

and trains the parser to enforce a∗t under the state
st = (q, a1:t−1). However, this is not achievable by
conventional supervised learning since the training
needs to be conducted in an interactive environ-
ment, where the partial parse a1:t−1 is generated
by the parser itself.

Instead, we formulate it as an imitation learning
problem (Daumé et al., 2009; Ross and Bagnell,
2010). Consider the user as a demonstrator, then
the derived action a∗t can be viewed as an expert
demonstration which is interactively sampled from
the demonstrator’s policy (or expert policy) π∗,2

i.e., a∗t ∼ π∗(st). The goal of our algorithm is thus
to train policy π̂ to imitate the expert policy π∗.
A general procedure is described in Algorithm 1
(Line 1–9), where π̂ is learned iteratively for every
m user questions. In each iteration, the policy is
retrained on an aggregated training data over the
past iterations, following the Dataset Aggregation
fashion in (Ross et al., 2011).

2We follow the imitation learning literature and use “expert”
to refer to the imitation target, but the user in our setting by

Algorithm 1 The NEIL Algorithm
Input: Initial training data D0, policy confidence

threshold µ.
Output: A trained policy π̂.

1: Initialize D ← D0.
2: Initialize π̂1 by training it on D0.
3: for i = 1 to N do
4: Observe m user questions qj , j ∈ [1,m];
5: Di ←

⋃m
j=1 PARSE&COLLECT(µ, qj , π̂i, π

∗);
6: Aggregate dataset D ← D

⋃
Di;

7: Train policy π̂i+1 on D using Eq. (1).
8: end for
9: return best π̂i on validation.

10: function PARSE&COLLECT(µ, q, π̂i, π∗)
11: Initialize D′i ← ∅, s1 = (q, φ).
12: for t = 1 to T do
13: Preview action at = arg maxa π̂i(st);
14: if pπ̂i(at|st) ≥ µ then
15: wt ← 1;
16: Collect D′i ← D′i

⋃
{(st, at, wt)};

17: Execute at;
18: else
19: Trigger user interaction and derive

expert demonstration a∗t ∼ π∗(st);
20: wt ← 1 if a∗t is valid; 0 otherwise;
21: Collect D′i ← D′i

⋃
{(st, a∗t , wt)};

22: Execute a∗t .
23: end if
24: end for
25: return D′i.
26: end function

4.2 Annotation-efficient Imitation Learning
Consider parsing a user question and collecting
training data using the parser π̂i in the i-th iteration
(Line 5). A standard imitation learning algorithm
such as DAGGER (Ross et al., 2011) usually re-
quests expert demonstration a∗t for every state st in
the sampled trajectory. However, it requires a con-
siderable amount of user annotations, which may
not be practical when interacting with end users.

Instead, we propose to adopt an annotation-
efficient learning strategy in NEIL, which saves user
annotations by selectively requesting user interac-
tions, as indicated in function PARSE&COLLECT.
In each parsing step, the system first previews
whether it is confident about its own decision at
(Line 13–14), which is determined when its proba-
bility is no less than a threshold, i.e., pπ̂i(at|st) ≥

no means needs to be a “domain (SQL) expert”.

µ.3 In this case, the algorithm executes and col-
lects its own action at (Line 15–17); otherwise, a
system-user interaction will be triggered and the de-
rived demonstration a∗t ∼ π∗(st) will be collected
and executed to continue parsing (Line 19–22).

Denote a collected state-action pair as (st, ãt),
where ãt could be at or a∗t depending on whether
an interaction is requested. To train π̂i+1 (Line 7),
our algorithm adopts a reduction-based approach
similar to DAGGER and reduces imitation learn-
ing to iterative supervised learning. Formally, we
define our training loss function as a weighted neg-
ative log-likelihood:

L(π̂i+1) = −
1

|D|
∑

(st,ãt,wt)∈D

wt log pπ̂i(ãt|st), (1)

where D is the aggregated training data over i iter-
ations and wt denotes the weight of (st, ãt).

We consider assigning weight wt in three cases:
(1) For confident actions at, we setwt = 1. This es-
sentially treats the system’s own confident actions
as gold decisions, which resembles self-training
(Scudder, 1965; Nigam and Ghani, 2000; Mc-
Closky et al., 2006). (2) For user-confirmed deci-
sions (valid demonstrations a∗t), such as enforcing
a WHERE condition on “Player” in Figure 1, wt
is also set to 1 to encourage the parser to imitate
the correct decisions from users. (3) For uncer-
tain actions that cannot be addressed via human
interactions (invalid demonstrations a∗t , which are
identified when the user selects “None of the above
options” in Figure 1), we assign wt = 0. This
could happen when some of the incorrect prece-
dent actions are not fixed. For example, in Figure 1,
if the system missed correcting the WHERE condi-
tion on “School/Club Team”, then whatever
value it generates after “WHERE School/Club
Team=” is wrong, and thus any action a∗t derived
from human feedback would be invalid. In this
case, the system selects the next available option
without further validation and continues parsing.

A possible training strategy to handle case (3)
may set wt to be negative, similar to Welleck et al.
(2020). However, empirically we find this strat-
egy fails to train the parser to correct its mistake
in generating “School/Club Team” but rather
disturbs the model training. By setting wt = 0, the
impact of unaddressed actions is removed from
training. A similar solution is also adopted in

3The metric is shown effective for interactive semantic
parsing in Yao et al. (2019b). Other confidence measures can
also be explored, as we will discuss in Section 7.

Petrushkov et al. (2018); Kreutzer and Riezler
(2019). As shown in Section 6, this way of training
weight assignment enables stable improvement in
iterative model learning while requiring fewer user
annotations.

5 Theoretical Analysis

While NEIL enjoys the benefit of learning from a
small amount of user feedback, one crucial ques-
tion is whether it can still achieve the same level of
performance as the traditional supervised approach
(which trains a policy on full expert annotations, if
one could afford that and manage the privacy risk).
In this section, we prove that the performance gap
between the two approaches is mainly determined
by the learning policy’s probability of trusting a
confident action that turns out to be wrong, which
can be controlled in practice.

Our analysis follows prior work (Ross and Bag-
nell, 2010; Ross et al., 2011) to assume a unified
trajectory length T and an infinite number of train-
ing samples in each iteration (i.e., m = ∞ in Al-
gorithm 1), such that the state space can be full ex-
plored by the learning policy. An analysis under the
“finite sample” case can be found in Appendix A.5.

5.1 Cost Function for Analysis

Unlike typical imitation learning tasks (e.g., Super
Tux Kart (Ross et al., 2011)), in semantic parsing,
there exists only one gold trajectory semantically
identical to the question.4 Whenever a policy action
is different from the gold one, the whole trajectory
will not yield the correct semantic meaning and
the parsing is deemed failed. In other words, a
well-performing semantic parser should be able to
keep staying in the correct trajectory during the
parsing. Therefore, for theoretical analysis, we
only analyze a policy’s performance when it is
conditioned on a gold partial parse, i.e., st ∈ dtπ∗ ,
where dtπ∗ is the state distribution in step t when
executing the expert policy π∗ for first t-1 steps.
Let `(s, π̂) = 1 − pπ̂(a = a∗|s) be the loss of π̂
making a mistake at state s. We define the cost (i.e.,
the inverse test-time quality) of a policy as:

J(π̂) = TEs∼dπ∗
[
`(s, π̂)

]
, (2)

where dπ∗ = 1
T

∑T
t=1 d

t
π∗ denotes the average ex-

pert state distribution (assuming time step t is a
4We assume a canonical order for swappable components

in a parse. In practice, it may be possible, though rare, for one
question to have multiple gold parses.

random variable uniformly sampled from 1 ∼ T).
A detailed derivation is shown in Appendix A.1.

The better a policy π̂ is, the smaller this cost be-
comes. Note that, by defining Eq. (2), we simplify
the analysis from evaluating the whole trajectory
sampled from π̂ (as we do in experiments) to evalu-
ating the expected single-step loss of π̂ conditioned
on a gold partial parse. This cost function makes
the analysis easier and meanwhile reflects a con-
sistent relative performance among algorithms for
comparison. Next, we compare our NEIL algo-
rithm with the supervised approach by analyzing
the upper bounds of their costs.

5.2 Cost Bound of Supervised Approach
A fully supervised system trains a parser on expert-
annotated (q, a∗1:T) pairs, where the gold semantic
parse a∗1:T can be viewed as generated by executing
the expert policy π∗. This gives the policy π̂sup:

π̂sup = arg min
π∈Π

Es∼dπ∗ [l(s, π)],

where Π is the policy space induced by the model
architecture. A detailed derivation in Appendix A.2
shows the cost bound of the supervised approach:
Theorem 5.1. For supervised approach, let εN =
minπ∈Π Es∼dπ∗ [l(s, π)], then J(π̂sup) = TεN .

The theorem gives an exact bound (as shown by
the equality) since the supervised approach, given
the “infinite sample” assumption, trains a policy
under the same state distribution dπ∗ as the one
being evaluated in the cost function (Eq. (2)).

5.3 Cost Bound of NEIL Algorithm
Recall that, in each training iteration, NEIL samples
trajectories by executing actions from both the pre-
viously learned policy π̂i and the expert policy π∗

(when an interaction is requested). Let πi denote
such a “mixture” policy. We derive the following
cost bound of a NEIL policy π̂:

J(π̂) ≤ T

N

N∑
i=1

[
Es∼dπi [`(s, π̂i)]+`max||dπi−dπ∗ ||1

]
.

The bound is determined by two terms. The first
term Es∼dπi [`(s, π̂i)] calculates the expected train-
ing loss of π̂i. Notice that, while the policy is
trained on states induced by the mixture policy
(s ∼ dπi), what matters to its test-time quality is
the policy’s performance conditioned on a gold
partial parse (s ∼ dπ∗ in Eq. (2)). This state dis-
crepancy, which does not exist in the supervised ap-
proach, explains the performance loss of NEIL, and

is bounded by the second term `max||dπi − dπ∗ ||1,
the weighted L1 distance between dπi and dπ∗ . To
bound the two terms, we employ a “no-regret” as-
sumption (Kakade and Tewari, 2009; Ross et al.,
2011, see Appendix A.3–A.4 for details), which
gives the theorem:
Theorem 5.2. For the proposed NEIL algorithm,
if N is Õ(T), there exists a policy π̂ ∈ π̂1:N s.t.
J(π̂) ≤ T

[
εN + 2T`max

N

∑N
i=1 ei

]
+O(1).

Here, εN = minπ∈Π
1
N

∑N
i=1 Es∼dπi [`(s, π)]

denotes the best expected policy loss in hindsight,
and ei denotes the probability that π̂i does not query
the expert policy (i.e., being confident) but its own
action is wrong under dπ∗ .

We note that a no-regret algorithm requires con-
vexity of the loss function (Hazan et al., 2007;
Kakade and Tewari, 2009), which is not satisfied by
neural network-based semantic parsers. In general,
proving theorems under a non-convex case is not
trivial. Therefore, we follow the common practice
(e.g., Kingma and Ba (2015); Reddi et al. (2018))
to theoretically analyze the convex case while em-
pirically demonstrating the performance of our
NEIL algorithm with non-convex loss functions
(i.e., when it applies to neural semantic parsers).
More accurate regret bound for non-convex cases
will be studied in the future.

Remarks. Compared with the supervised ap-
proach (Theorem 5.1), NEIL’s cost bound addition-
ally contains a term of 1

N

∑N
i=1 ei, which, as we

expect, comes from the aforementioned state dis-
crepancy. Intuitively, if a learning policy frequently
executes its own but wrong actions in training, the
resulting training states dπi will greatly deviate
from the gold ones dπ∗ .

This finding inspires us to restrict the perfor-
mance gap by reducing the learning policy’s error
rate when it does not query the expert. Empiri-
cally this can be achieved by: (1) Accurate confi-
dence estimation, so that actions deemed confident
are generally correct, and (2) Moderate policy ini-
tialization, such that in general the policy is less
likely to make wrong actions throughout the iter-
ative training. For (1), we set a high confidence
threshold µ=0.95, which is demonstrated reliable
for MISP (Yao et al., 2019b). We then empirically
validate (2) in experiments.

6 Experiments

In this section, we conduct experiments to demon-
strate the annotation efficiency of our NEIL algo-

rithm and that it can train semantic parsers for high
performance when the parsers are reasonably ini-
tialized, which verifies our theoretical analysis.

6.1 Experimental Setup
We compare various systems on the WikiSQL
dataset (Zhong et al., 2017). The dataset contains
large-scale annotated question-SQL pairs (56,355
pairs for training) and thus serves as a good re-
source for experimenting iterative learning. For the
base semantic parser, we choose SQLova (Hwang
et al., 2019), one of the top-performing models on
WikiSQL, to ensure a reasonable model capacity
in terms of data utility along iterative training.

We experiment each system with three parser
initialization settings, using 10%, 5% and 1% of
the total training data. During iterative learning,
questions from the remaining training data arrive
in a random order to simulate user questions and
we simulate user feedback by directly comparing
the synthesized query with the gold one. In each
iteration, all systems access exactly the same user
questions. Depending on how they solicit feedback,
each system collects a different number of anno-
tations. At the end of each iteration, we update
each system by retraining its parser on its accu-
mulated annotations and the initial training data,
and report its (exact) query match accuracy on the
test set. We also report the accumulated number
of annotations that each system has requested after
each training iteration, in order to compare their
annotation efficiency.

In experiments, we consider every 1,000 user
questions as one training iteration (i.e., m=1,000
in Algorithm 1). We repeat the whole iterative
training for three runs and report average results.
Reproducible details are included in Appendix B.

6.2 System Comparison
We denote our system as MISP-NEIL since it lever-
ages MISP in the back end of NEIL. We compare it
with the traditional supervised approach (denoted
as Full Expert). To investigate the skyline capabil-
ity of our system, we also present a variant called
MISP-NEIL*, which is assumed with perfect con-
fidence measurement and interaction design, so that
it can precisely identify and correct its mistakes
during parsing. This is implemented by allowing
the system to compare its synthesized query with
the gold one. Note that this is not a realized auto-
matic system; we show its performance as an upper
bound of MISP-NEIL.

On the other hand, although execution feedback-
based learning systems (Clarke et al., 2010; Artzi
and Zettlemoyer, 2013; Iyer et al., 2017) may not
be very practical for end users, we include them
nonetheless in the interest of a comprehensive com-
parison. This leads to two baselines. The Bi-
nary User system requests binary user feedback on
whether executing the generated SQL query returns
correct database results and collects only queries
with correct results to further improve the parser.
The Binary User+Expert system additionally col-
lects full expert SQL annotations when the gener-
ated SQL queries do not yield correct answers.

Given the completely different nature of annota-
tions from Binary User (which validate the denota-
tion) and those from Full Expert and MISP-NEIL

(which validate a semantic parse’s constituents),
there may not exist a universally fair way to con-
vert one’s annotation consumption into the other’s.
Therefore, in the following sections, we only
present and discuss Binary User(+Expert) in terms
of their parsing accuracy under different training
iterations. To give an estimation of their anno-
tation efficiency for reference, we design a com-
promised annotation calculation metric for Binary
User(+Expert) and include their results on Wik-
iSQL validation set in Appendix C.

Finally, while our MISP-NEIL and the afore-
mentioned baselines all leverage feedback from
users or domain experts, an interesting question is
how much gain they could obtain compared with
using no annotation or feedback at all. To this
end, we compare the systems with a Self Train
baseline (Scudder, 1965; Nigam and Ghani, 2000;
McClosky et al., 2006). In each iteration, this base-
line collects SQL queries generated by itself as
the new gold annotations for further training. We
additionally apply a confidence threshold to im-
prove the collection quality, i.e., only SQL queries
with probability pπ̂(a1:T |s1) greater than 0.5 are
included. This strategy empirically leads to better
performance. Intuitively, we expect Self Train to
perform no better than any other systems in our
experiments, since no human feedback is provided
to correct mistakes in its collection.

6.3 Experimental Results

We evaluate each system by answering two re-
search questions (RQs):
• RQ1: Can the system improve a parser with-

out requiring a large amount of annotations?

Figure 2: Parsing accuracy on WikiSQL test set when systems are trained with various numbers of user/expert
annotations (top) and for different iterations (bottom). We experiment with three initialization settings, using 10%,
5% and 1% of the training data respectively. Results on validation set can be found in Appendix C.

• RQ2: For interactive systems, while requiring
weaker supervision, can they train the parser
to reach a performance comparable to the
traditional supervised system?

For RQ1, we measure the number of user/expert
annotations that a system requires to train a parser.
For Full Expert, this number equals the trajectory
length of the gold query (e.g., 5 for the query in Fig-
ure 1); for MISP-NEIL and MISP-NEIL*, it is the
number of user interactions during training. Note
that while we do not differentiate the actual (e.g.,
time/financial) cost of users from that of experts in
this aspect, we emphasize that our system enjoys an
additional benefit of collecting training examples
from a much cheaper and more abundant source.
For Self Train, the number of annotations is always
zero since it does not request any human feedback
for the online user questions.

Our results in Figure 2 (top) demonstrate that
MISP-NEIL consistently consumes a comparable
or smaller amount of annotations to train the parser
to reach the same parsing accuracy. Figure 5 in Ap-
pendix further shows that, on average, it requires
no more than one interaction for each user question
along the training. Particularly in the 10% initial-
ization setting, MISP-NEIL uses less than 10% of

the total annotations that Full Expert needs in the
end. Given the limited size of WikiSQL training set,
the simulation experiments currently can only show
MISP-NEIL’s performance under a small number
of annotations. However, we expect this gain to
continue as it receives more user questions in the
long-term deployment.

To answer RQ2, Figure 2 (bottom) compares
each system’s accuracy after they have been trained
for the same number of iterations. The results
demonstrate that when a semantic parser is mod-
erately initialized (10%/5% initialization setting),
MISP-NEIL can further improve it to reach a com-
parable accuracy as Full Expert (0.776/0.761 vs.
0.794 in the last iteration). In the extremely weak
1% initialization setting (using only around 500
initial training examples), all interactive learning
systems suffer from a huge performance loss. This
is consistent with our finding in theoretical analysis
(Section 5). In Appendix C.2, we plot the value
of ei, the probability that π̂i makes a confident but
wrong decision given a gold partial parse, showing
that a better initialized policy generally obtains a
smaller ei throughout the training and thus a tighter
cost bound.

Our system also surpasses Binary User. We find

that the inferior performance of Binary User is
mainly due to the “spurious program” issue (Guu
et al., 2017), i.e., a SQL query having correct ex-
ecution results can still be incorrect in terms of
semantics. MISP-NEIL circumvents this issue by
directly validating the semantic meaning of inter-
mediate parsing decisions. The performance of
Binary User+Expert is close to Full Expert as it has
additionally involved expert annotations on a con-
siderable number of user questions, which on the
other hand also leads to extra annotation overhead.

When it is assumed with perfect interaction de-
sign and confidence estimator, MISP-NEIL* shows
striking superiority in both aspects. Since it al-
ways corrects wrong decisions immediately, MISP-
NEIL* can collect and derive the same training
examples as Full Expert, and thus trains the parser
to Full Expert’s performance level in Figure 2 (bot-
tom). However, it requires only 6% of the annota-
tions that Full Expert needs (Figure 2, top). These
observations imply large room for MISP-NEIL to
be improved in the future.

Finally, we observe that all feedback-based learn-
ing systems outperform Self Train dramatically
(Figure 2, bottom). This verifies the benefit of
learning from human feedback.

6.4 Generalize to Complex SQL Queries

We next investigate whether MISP-NEIL can gen-
eralize to the complex SQL queries in the Spider
dataset (Yu et al., 2018), which can contain com-
plicated keywords like GROUP BY. For the base
semantic parser, we choose EditSQL (Zhang et al.,
2019), one of the open-sourced top models on Spi-
der. Given the small size of Spider (7,377 question-
SQL pairs for training after data cleaning; see Ap-
pendix B.3 for details), we only experiment with
one initialization setting, using 10% of the training
set. Since EditSQL does not predict the specific
values in a SQL query (e.g., “jalen rose” in
Figure 1), we cannot execute the generated query to
simulate the binary execution feedback. Therefore,
we only compare our system with Full Expert and
Self Train. Parsers are evaluated on Spider Dev set
since its test set is not publicly available.

Figure 3 (top) shows that MISP-NEIL and MISP-
NEIL* consistently achieve comparable or better
annotation efficiency while enjoying the advantage
of learning from end user interaction. We expect
this superiority to continue as the systems receive
more user questions beyond Spider. Meanwhile,

Figure 3: Parsing accuracy on Spider Dev set when sys-
tems are trained with various numbers of user/expert
annotations and for different iterations.

we also notice that the gain is smaller and MISP-
NEIL suffers from a large performance loss com-
pared with Full Expert (Figure 3, bottom), due to
the poor parser initialization and the SQL query
complexity. This can be addressed via adopting
better interaction designs and more accurate confi-
dence estimation, as shown by MISP-NEIL*. Sim-
ilarly as in WikiSQL experiments, Self Train per-
forms worse than human-in-the-loop learning sys-
tems, as there is no means to correct wrong predic-
tions in its collected annotations.

7 Conclusion and Future Work

Our work shows the possibility of continually learn-
ing semantic parsers from fine-grained end user in-
teraction. As a pilot study, we experiment systems
with simulated user interaction. One important fu-
ture work is thus to conduct large-scale user studies
and train parsers from real user interaction. This
is not trivial and has to account for uncertainties
such as noisy user feedback. We also plan to derive
a more realistic formulation of user/expert anno-
tation costs by analyzing real user statistics (e.g.,
average time spent on each question).

In experiments, we observe that neural semantic
parsers tend to be overconfident and training them
with more data does not mitigate this issue. In the
future, we will look into more accurate confidence
measure via neural network calibration (Guo et al.,
2017) or using machine learning components (e.g.,
answer triggering (Zhao et al., 2017) or a reinforced
active selector (Fang et al., 2017)).

Finally, we believe our algorithm can be applied
to save annotation effort for other NLP tasks, espe-
cially the low-resource ones (Mayhew et al., 2019).

Acknowledgments

We would like to thank the anonymous review-
ers for their helpful comments. The research con-
ducted by the Ohio State University authors was
sponsored in part by the Army Research Office un-
der cooperative agreements W911NF-17-1-0412,
NSF Grant IIS1815674, NSF CAREER #1942980,
Fujitsu gift grant, and Ohio Supercomputer Center
(Center, 1987). The views and conclusions con-
tained herein are those of the authors and should not
be interpreted as representing the official policies,
either expressed or implied, of the Army Research
Office or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Government purposes notwithstanding
any copyright notice herein. The Spider dataset (Yu
et al., 2018) is distributed under the CC BY-SA 4.0
license.

References
Abdalghani Abujabal, Rishiraj Saha Roy, Mohamed

Yahya, and Gerhard Weikum. 2018. Never-ending
learning for open-domain question answering over
knowledge bases. In Proceedings of the 2018 World
Wide Web Conference, pages 1053–1062.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Kazuoki Azuma. 1967. Weighted sums of certain de-
pendent random variables. Tohoku Mathematical
Journal, Second Series, 19(3):357–367.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544.

Kianté Brantley, Amr Sharaf, and Hal Daumé, III. 2020.
Active imitation learing with noisy guidance. In Pro-
ceedings of the Conference of the Association for
Computational Linguistics (ACL).

Ohio Supercomputer Center. 1987. Ohio supercom-
puter center. http://osc.edu/ark:/19495/
f5s1ph73.

Shobhit Chaurasia and Raymond J Mooney. 2017. Di-
alog for language to code. In Proceedings of the
Eighth International Joint Conference on Natural
Language Processing (Volume 2: Short Papers),
pages 175–180.

Sonia Chernova and Manuela Veloso. 2009. Interactive
policy learning through confidence-based autonomy.
Journal of Artificial Intelligence Research, 34:1–25.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from
the world’s response. In Proceedings of the four-
teenth conference on computational natural lan-
guage learning, pages 18–27. Association for Com-
putational Linguistics.

Hal Daumé, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine learn-
ing, 75(3):297–325.

Li Dong, Chris Quirk, and Mirella Lapata. 2018. Confi-
dence modeling for neural semantic parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 743–753.

Long Duong, Hadi Afshar, Dominique Estival, Glen
Pink, Philip R Cohen, and Mark Johnson. 2018. Ac-
tive learning for deep semantic parsing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 43–48.

Ahmed Elgohary, Saghar Hosseini, and Ahmed Has-
san Awadallah. 2020. Speak to your parser: Inter-
active text-to-SQL with natural language feedback.
In Annual Conference of the Association for Compu-
tational Linguistics (ACL 2020).

Meng Fang, Yuan Li, and Trevor Cohn. 2017. Learning
how to active learn: A deep reinforcement learning
approach. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 595–605.

Yang Gao, Christian M Meyer, and Iryna Gurevych.
2018. APRIL: Interactively learning to summarise
by combining active preference learning and rein-
forcement learning. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4120–4130.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
1321–1330. JMLR. org.

Izzeddin Gur, Semih Yavuz, Yu Su, and Xifeng Yan.
2018. DialSQL: Dialogue based structured query
generation. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1339–1349.

Kelvin Guu, Panupong Pasupat, Evan Liu, and Percy
Liang. 2017. From language to programs: Bridg-
ing reinforcement learning and maximum marginal
likelihood. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1051–1062.

Braden Hancock, Antoine Bordes, Pierre-Emmanuel
Mazare, and Jason Weston. 2019. Learning from di-
alogue after deployment: Feed yourself, chatbot! In

http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73

Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3667–
3684.

Elad Hazan, Amit Agarwal, and Satyen Kale. 2007.
Logarithmic regret algorithms for online convex op-
timization. Machine Learning, 69(2-3):169–192.

Luheng He, Julian Michael, Mike Lewis, and Luke
Zettlemoyer. 2016. Human-in-the-loop parsing. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2337–2342.

Wassily Hoeffding. 1994. Probability inequalities for
sums of bounded random variables. In The Col-
lected Works of Wassily Hoeffding, pages 409–426.
Springer.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on WikiSQL with table-aware word contextualiza-
tion. arXiv preprint arXiv:1902.01069.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963–973.

Kshitij Judah, Alan P Fern, Thomas G Dietterich, and
Prasad Tadepalli. 2014. Active imitation learning:
Formal and practical reductions to iid learning. Jour-
nal of Machine Learning Research, 15:4105–4143.

Sham M Kakade and Ambuj Tewari. 2009. On the
generalization ability of online strongly convex pro-
gramming algorithms. In Advances in Neural Infor-
mation Processing Systems, pages 801–808.

Beomjoon Kim and Joelle Pineau. 2013. Maximum
mean discrepancy imitation learning. Robotics: Sci-
ence and systems.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Julia Kreutzer and Stefan Riezler. 2019. Self-regulated
interactive sequence-to-sequence learning. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 303–315.

Fei Li and HV Jagadish. 2014. Constructing an in-
teractive natural language interface for relational
databases. Proceedings of the VLDB Endowment,
8(1):73–84.

Natasha Lomas. 2019. Google ordered to halt hu-
man review of voice AI recordings over privacy
risks. https://techcrunch.com/2019/08/02/
google-ordered-to-halt-human-review-
of-voice-ai-recordings-over-privacy-
risks/. Accessed: 2020-04-28.

Stephen Mayhew, Snigdha Chaturvedi, Chen-Tse Tsai,
and Dan Roth. 2019. Named entity recognition with
partially annotated training data. In Proceedings of
the 23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 645–655.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Pro-
ceedings of the Human Language Technology Con-
ference of the NAACL, Main Conference, pages 152–
159.

Khanh Nguyen, Hal Daumé III, and Jordan Boyd-
Graber. 2017. Reinforcement learning for bandit
neural machine translation with simulated human
feedback. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1464–1474.

Ansong Ni, Pengcheng Yin, and Graham Neubig. 2020.
Merging weak and active supervision for semantic
parsing. In Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence (AAAI), New York, USA.

Kamal Nigam and Rayid Ghani. 2000. Analyzing the
effectiveness and applicability of co-training. In
Proceedings of the ninth international conference on
Information and knowledge management, pages 86–
93.

Pavel Petrushkov, Shahram Khadivi, and Evgeny Ma-
tusov. 2018. Learning from chunk-based feedback
in neural machine translation. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
326–331.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar.
2018. On the convergence of adam and beyond. In
International Conference on Learning Representa-
tions.

Stéphane Ross and Drew Bagnell. 2010. Efficient re-
ductions for imitation learning. In Proceedings of
the thirteenth international conference on artificial
intelligence and statistics, pages 661–668.

Stéphane Ross and J. Andrew Bagnell. 2014. Rein-
forcement and imitation learning via interactive no-
regret learning. ArXiv, abs/1406.5979.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Pro-
ceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627–
635.

H Scudder. 1965. Probability of error of some adap-
tive pattern-recognition machines. IEEE Transac-
tions on Information Theory, 11(3):363–371.

Semantic Machines, Jacob Andreas, John Bufe, David
Burkett, Charles Chen, Josh Clausman, Jean Craw-
ford, Kate Crim, Jordan DeLoach, Leah Dorner, Ja-
son Eisner, Hao Fang, Alan Guo, David Hall, Kristin

https://techcrunch.com/2019/08/02/google-ordered-to-halt-human-review-of-voice-ai-recordings-over-privacy-risks/
https://techcrunch.com/2019/08/02/google-ordered-to-halt-human-review-of-voice-ai-recordings-over-privacy-risks/
https://techcrunch.com/2019/08/02/google-ordered-to-halt-human-review-of-voice-ai-recordings-over-privacy-risks/
https://techcrunch.com/2019/08/02/google-ordered-to-halt-human-review-of-voice-ai-recordings-over-privacy-risks/

Hayes, Kellie Hill, Diana Ho, Wendy Iwaszuk, Sm-
riti Jha, Dan Klein, Jayant Krishnamurthy, Theo
Lanman, Percy Liang, Christopher H. Lin, Ilya
Lintsbakh, Andy McGovern, Aleksandr Nisnevich,
Adam Pauls, Dmitrij Petters, Brent Read, Dan Roth,
Subhro Roy, Jesse Rusak, Beth Short, Div Slomin,
Ben Snyder, Stephon Striplin, Yu Su, Zachary
Tellman, Sam Thomson, Andrei Vorobev, Izabela
Witoszko, Jason Wolfe, Abby Wray, Yuchen Zhang,
and Alexander Zotov. 2020. Task-oriented dialogue
as dataflow synthesis. Transactions of the Associa-
tion for Computational Linguistics, 8:556–571.

Artem Sokolov, Julia Kreutzer, Christopher Lo, and
Stefan Riezler. 2016. Learning structured predictors
from bandit feedback for interactive nlp. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1610–1620.

Yu Su, Ahmed Hassan Awadallah, Madian Khabsa,
Patrick Pantel, Michael Gamon, and Mark Encar-
nacion. 2017. Building natural language interfaces
to web apis. In Proceedings of the International
Conference on Information and Knowledge Manage-
ment.

Yu Su, Ahmed Hassan Awadallah, Miaosen Wang, and
Ryen W White. 2018. Natural language interfaces
with fine-grained user interaction: A case study on
web APIs. In Proceedings of the International ACM
SIGIR Conference on Research and Development in
Information Retrieval.

Richard S Sutton and Andrew G Barto. 2018. Rein-
forcement learning: An introduction. MIT press.

Sida I Wang, Samuel Ginn, Percy Liang, and Christo-
pher D Manning. 2017. Naturalizing a program-
ming language via interactive learning. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 929–938.

Sida I Wang, Percy Liang, and Christopher D Manning.
2016. Learning language games through interaction.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2368–2378.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2020. Neu-
ral text generation with unlikelihood training. In
International Conference on Learning Representa-
tions.

William A Woods. 1973. Progress in natural language
understanding: an application to lunar geology. In
Proceedings of the American Federation of Informa-
tion Processing Societies Conference.

Ziyu Yao, Xiujun Li, Jianfeng Gao, Brian Sadler, and
Huan Sun. 2019a. Interactive semantic parsing for
if-then recipes via hierarchical reinforcement learn-
ing. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 33, pages 2547–2554.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019b.
Model-based interactive semantic parsing: A unified
framework and a text-to-SQL case study. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5450–5461.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1321–1331.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-SQL task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

Jichuan Zeng, Xi Victoria Lin, Steven CH Hoi, Richard
Socher, Caiming Xiong, Michael Lyu, and Irwin
King. 2020. Photon: A robust cross-domain text-
to-SQL system. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 204–214.

Luke S Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: structured clas-
sification with probabilistic categorial grammars. In
Proceedings of the Twenty-First Conference on Un-
certainty in Artificial Intelligence, pages 658–666.

Jiakai Zhang and Kyunghyun Cho. 2017. Query-
efficient imitation learning for end-to-end simulated
driving. In Thirty-First AAAI Conference on Artifi-
cial Intelligence.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim,
Eric Xue, Xi Victoria Lin, Tianze Shi, Caim-
ing Xiong, Richard Socher, and Dragomir Radev.
2019. Editing-based SQL query generation for
cross-domain context-dependent questions. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5341–5352.

Jie Zhao, Yu Su, Ziyu Guan, and Huan Sun. 2017.
An end-to-end deep framework for answer trigger-
ing with a novel group-level objective. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1276–1282.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.

https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.1162/tacl_a_00333

A Theoretical Analysis in Infinite
Sample Case

In this section, we give a detailed theoretical anal-
ysis to derive the cost bounds of the supervised
approach and our proposed NEIL algorithm (Sec-
tion 4). Following Ross et al. (2011), we first focus
the proof on an infinite sample case, which assumes
an infinite number of samples to train a policy in
each iteration (i.e., m =∞ in Algorithm 1), such
that the state space in training can be full explored
by the learning policy.

As an overview, we start the analysis by introduc-
ing the “cost function” we use to analyze each pol-
icy in Appendix A.1, which represents an inverse
quality of a policy. In Appendix A.2, we derive the
bound of the cost of the supervised approach. Ap-
pendix A.3 and Appendix A.4 then discuss the cost
bound of our proposed NEIL algorithm. Finally, in
Appendix A.5, we show the cost bound of NEIL in
finite sample case.

A.1 Cost Function for Analysis
In a semantic parsing task, whenever a policy ac-
tion is different from the gold one, the whole trajec-
tory cannot yield the correct semantic meaning and
the parsing is deemed failed. Therefore, we analyze
a policy’s performance only when it is conditioned
on a gold partial parse. Intuitively, a policy with
better quality should have a higher parsing accu-
racy under a gold partial parse, so that it is more
likely to sample a completely correct trajectory in
inference time.

Given a question q and denoting a∗1:t as the gold
partial trajectory sampled by the expert policy π∗,
we first define the cost of sampling a partial trajec-
tory a1:t = (a1, ..., at) as:

C(q, a1:t) =

{
0 if a1:t = a∗1:t

1 otherwise
.

In other words, a sampled partial trajectory is cor-
rect if and only if it is the same as the gold partial
parse. Based on this definition, we further define
the expected cost of policy π̂ in a single time step t
(given the question q) as:

Ctπ̂(q) = Ea1:t−1∼π∗Eat∼π̂[C(q, a1:t)]

= Ea1:t−1∼π∗ [1− pπ̂(at = a∗t |q, a1:t−1)].

Here, a1:t−1 ∼ π∗ denotes a gold partial parse till
the (t-1)-th step, which is obtained by executing
the expert policy π∗ for the first t-1 steps (given q),

and pπ̂(at = a∗t |q, a1:t−1) denotes the probability
that π̂ samples action a∗t given a question q and
a partial parse a1:t−1. By taking an expectation
over all questions q ∈ Q, we have the following
derivations:

Eq∈Q[Ctπ̂(q)] =Eq∈Q,a1:t−1∼π∗ [1−pπ̂(at=a∗t |q,a1:t−1)]

=E
st∼dtπ∗

[1−pπ̂(at=a∗t |st)].

The second equality holds by the definition st =
(q, a1:t−1), and dtπ∗ is the “expert state distribution”
in step t when executing the expert policy π∗ for
first t-1 steps. In this analysis, we follow Ross
and Bagnell (2010); Ross et al. (2011) to assume
a unified decision length T . By summing up the
above expected cost over the T steps, we define the
cost (i.e., the inverse test-time quality) of policy π̂:

J(π̂) =

T∑
t=1

Eq∈Q[Ctπ̂(q)]

=

T∑
t=1

Est∼dtπ∗ [1− pπ̂(at = a∗t |st)].

Denote `(s, π̂) = 1 − pπ̂(a = a∗|s), a ∼
π̂(s), a∗ ∼ π∗(s) as the “single-step loss function”,
which is bounded within [0, 1], then the cost of pol-
icy π̂ can be simplified as:

J(π̂) =

T∑
t=1

Est∼dtπ∗
[
`(st, π̂)

]
= TEt∼U(1,T)Est∼dtπ∗

[
`(st, π̂)

]
= TEs∼dπ∗

[
`(s, π̂)

]
, (3)

where dπ∗ = 1
T

∑T
t=1 d

t
π∗ is the average expert

state distribution, when we assume the time step t
to be a random variable under the uniform distribu-
tion U(1, T) (the second equality).

A.2 Cost Bound of Supervised Approach
In this section, we analyze the cost bound of the
supervised approach. Recall that the supervised
approach trains a policy π̂ using the standard super-
vised learning algorithm with supervision from π∗

at every decision step. Therefore, it finds the best
policy π̂sup on infinite samples as:

π̂sup = arg min
π∈Π

Es∼dπ∗ [`(s, π)], (4)

where Π denotes the policy space induced by the
model architecture, and the expectation over s is

sampled from the whole dπ∗ state space because of
the “infinite sample” assumption. The supervised
approach thus obtains the following cost bound:

J(π̂sup) =TEs∼dπ∗ [`(s, π̂sup)]
=T min

π∈Π
Es∼dπ∗ [`(s, π)].

This gives the following theorem:

Theorem A.1. For supervised approach, let εN =
minπ∈Π Es∼dπ∗ [`(s, π)], then J(π̂sup) = TεN .

The cost bound of the supervised approach rep-
resents its exact performance as implied by the
equality. This is because the approach trains a
policy (Eq. (4)) under the same state distribution
dπ∗ (given the “infinite sample” assumption) as in
evaluation (Eq. (3)). As we will show next, the
proposed NEIL algorithm breaks this consistency
while enjoying the benefit of high annotation effi-
ciency, which explains the performance gap.

A.3 No-regret Assumption
Before showing the cost bound of our NEIL al-
gorithm, we introduce a “no-regret” assumption
(Kakade and Tewari, 2009; Ross et al., 2011) that
is leveraged in the derivation.

Assumption A.1. No-regret assumption. De-
fine `i(π) = Es∼dπi [l(s, π)] and εN =

minπ∈Π
1
N

∑N
i=1 `i(π), then

1

N

N∑
i=1

`i(π̂i)− εN ≤ γN

for limN→∞ γN = 0 (usually γN ∈ Õ(1
N)).

This assumption characterizes an important pol-
icy learning pattern: As a policy is trained for an
infinite number of iterations, on average, its ex-
pected training loss (1

N

∑N
i=1 `i(π̂i)) will converge

to the loss of the best policy in hindsight (εN). In
our scenario, this assumption implies that, while
our policy is trained on online labels from both
the expert policy π∗ (when it is queried) and the
previously learned policy π̂i (when the agent is
confident), it still gradually fits to the best policy
over the same state space in training (dπi). In other
words, the likely noisy labels from π̂i do not harm
the model fitting to the expert policy in general.

Many no-regret algorithms (Hazan et al., 2007;
Kakade and Tewari, 2009) that guarantee γN ∈
Õ(1

N) require convexity or strong-convexity of the
loss function. However, the loss function used

in our application, which is built on the top of a
deep neural network model, does not satisfy this
requirement. In general, proving theorems under
a non-convex case is not trivial. In this analysis,
we follow the common practice (see Kingma and
Ba (2015); Reddi et al. (2018) for example) to the-
oretically analyze the convex case while empiri-
cally demonstrating the non-convex case. A more
accurate regret bound for non-convex neural net-
works (which may result in a slower γN conver-
gence speed with respect to N) can be studied in
the future.

A.4 Cost Bound of NEIL Algorithm
As shown in Algorithm 1, NEIL produces a se-
quence of policies π̂1:N = (π̂1, π̂2, ..., π̂N), where
N is the number of training iterations, and returns
the one with the best test-time performance on val-
idation set as π̂. In training, the algorithm executes
actions from both the learning policy π̂i (when the
model is confident) and the expert policy π∗. We
denote this “mixture” policy as πi. Then for the
first N iterations, we have the cost bound of NEIL

as:

J(π̂)= minπ̂′∈π̂1:N
TEs∼dπ∗

[
`(s,π̂′)

]
≤ T
N

∑N
i=1 Es∼dπ∗

[
`(s,π̂i)

]
≤ T
N

∑N
i=1

[
Es∼dπi [`(s,π̂i)]+`max||dπi−dπ∗ ||1

]
.

(5)

From the last inequality, we can see that the
cost bound of NEIL is restricted by two terms.
The first term Es∼dπi [`(s, π̂i)] denotes the ex-
pected loss of π̂i under the states induced by πi
during training (under the “infinite sample” as-
sumption, as mentioned in the beginning of the
analysis). By applying the no-regret assump-
tion (Assumption A.1), this term can be bound
by 1

N

∑N
i=1 Es∼dπi [`(s, π̂i)] ≤ εN + γN . Here,

εN = minπ∈Π
1
N

∑N
i=1 `i(π) denotes the best ex-

pected training loss in hindsight.
The second term denotes the L1 distance be-

tween state distributions induced by πi and π∗i ,
weighted by the maximum loss value lmax that
π̂i encounters over the training. As we notice, un-
like the supervised approach, NEIL trains a pol-
icy under dπi , while what matters to its test-time
quality is its performance on the state distribution
dπ∗ (Eq. (3)). This discrepancy explains the per-
formance loss of our algorithm compared to the
supervised approach and is bounded by the afore-
mentioned L1 distance. To further bound this term,

we define ei as the probability that π̂i makes a con-
fident (i.e., without querying the expert policy) but
wrong action under dπ∗ , and introduce the follow-
ing lemma:

Lemma A.1. ||dπi − dπ∗ ||1 ≤ 2Tei.

Proof. Let βit be the probability of querying the
expert policy under dtπ∗ , ε̃it the error rate of π̂i
under dtπ∗ (w.r.t. π∗), and d any state distribution
besides dπ∗ . We can then express dπi by:

dπi =

T∏
t=1

(βit + (1− βit)(1− ε̃it))dπ∗

+ (1−
T∏
t=1

(βit + (1− βit)(1− ε̃it)))d.

The distance between dπi and dπ∗ thus becomes

||dπi − dπ∗ ||1

=(1−
T∏
t=1

(βit + (1− βit)(1− ε̃it)))||d− dπ∗ ||1

≤2(1−
T∏
t=1

(βit + (1− βit)(1− ε̃it)))

≤2

T∑
t=1

[1− (βit + (1− βit)(1− ε̃it))]

≤2

T∑
t=1

[ε̃it(1− βit)]

≤2

T∑
t=1

eit

=2Tei.

The second inequality uses 1 −
∏T
t=1 xt ≤∑T

t=1(1− xt), which holds when xt ∈ [0, 1].

By applying Assumption A.1 and Lemma A.1 to
Eq. (3), we derive the following inequality:

J(π̂) ≤ T
[
γN + εN +

2T`max
N

N∑
i=1

ei
]
.

Given a large enough N (N ∈ Õ(T)), by the
no-regret assumption, we can further simplify the
above as:

J(π̂) ≤ T
[
εN +

2T`max
N

N∑
i=1

ei
]

+O(1),

which leads to our theorem:

Theorem A.2. For the proposed NEIL algorithm,
if N is Õ(T), there exists a policy π̂ ∈ π̂1:N s.t.
J(π̂) ≤ T

[
εN + 2T`max

N

∑N
i=1 ei

]
+O(1).

By comparing Theorem A.1 and Theorem A.2,
it is obvious that the performance gap between
NEIL and the supervised approach is bounded by
the term around 1

N

∑N
i=1 ei. We discuss its impli-

cations in Section 5 and show that, in practice, this
performance gap can be controlled by carefully ini-
tializing the policy and choosing a more accurate
confidence estimator.

Discussion about MISP-NEIL*. In experiments,
we consider a skyline instantiation of NEIL, called
MISP-NEIL*. This instantiation is assumed with
perfect confidence estimation and interaction de-
sign, such that it can precisely detect and correct
its intermediate mistakes during parsing. There-
fore, MISP-NEIL* presents an upper bound per-
formance (i.e., the tightest cost bound) of NEIL.
This can be interpreted theoretically. In fact, for
MISP-NEIL*, ei is always zero since the system
has ensured that its policy action is correct when it
does not query the expert policy. In this case, dπi =
dπ∗ , so εN = minπ∈Π

1
N

∑N
i=1 Es∼dπ∗ [l(s, π)] =

minπ∈Π Es∼dπ∗ [l(s, π)]. Therefore, according to
Theorem A.2, MISP-NEIL* has a cost bound of:

J(π̂) ≤ TεN +O(1),

where εN = minπ∈Π Es∼dπ∗ [l(s, π)].
By comparing this bound with the cost bound

in Theorem A.1, it is observed that MISP-NEIL*
shares the same cost bound as the supervised ap-
proach (except for the inequality relation and the
constant). This is explainable since MISP-NEIL*
indeed collects exactly the same training labels as
the supervised approach.

A.5 Cost Bound of NEIL Algorithm in Finite
Sample Case

The theorem in the previous section holds when the
algorithm observes infinite trajectories in training.
However, in practice, NEIL observes the training
loss from only a finite set of m trajectories in each
iteration. For this consideration, in the following
discussion, we provide a proof of the cost bound of
NEIL under the finite sample case.

Denote Di as the m trajectories collected in the
i-th iteration and `i(π̂i) = Es∼Di [`(s, π̂i)]. Ap-
plying the no-regret assumption (Assumption A.1)
allows us to bound the average expected policy
training loss: 1

N

∑N
i=1 Es∼Di

[
`(s, πi)

]
−ε̃N ≤ γ̃N ,

where ε̃N = minπ∈Π
1
N

∑N
i=1 Es∼Di

[
`(s, π)

]
de-

notes the loss of the best policy in hindsight on the
finite samples.

Following Eq. (5), we need to switch the
derivation from the expected loss of π̂i over
dπi (i.e., Es∼dπi [`(s, π̂i)]) to that over Di (i.e.,
Es∼Di [`(s, π̂i)]), the actual state distribution that
π̂i is trained on. To fill this gap, we introduce Yij
to denote the difference between the expected loss
of π̂i under dπi and the average loss of π̂i under
the j-th sample trajectory with π at iteration i. The
random variables Yij over all i ∈ {1, 2, ..., N}
and j ∈ {1, 2, ...,m} are all zero mean, bounded
in [−`max, `max] and form a martingale in the or-
der of Y11, Y12, ..., Y1m, Y21, ..., YNm. By Azuma-
Hoeffding’s inequality (Azuma, 1967; Hoeffding,

1994), 1
mN

∑N
i=1

∑m
j=1 Yij ≤ `max

√
2 log(1/δ)
mN

with probability 1− δ. Following the derivations
in Eq. (5) and by introducing Yij , with probability
of 1 − δ, we obtain the following inequalities by
definition:

J(π̂)

≤ T
N

N∑
i=1

[
Es∼dπi [`(s, π̂i)] + `max||dπi − dπ∗ ||1

]
≤ T
N

N∑
i=1

[
Es∼Di [`(s, π̂i)] + `max||dπi − dπ∗ ||1

]
+

T

mN

N∑
i=1

m∑
j=1

Yij

≤ T
N

N∑
i=1

[
Es∼Di [`(s, π̂i)] + `max||dπi − dπ∗ ||1

]
+ `maxT

√
2 log(1/δ)

mN

≤T
[
γ̃N + ε̃N + `max

√
2 log(1/δ)

mN

+
2`maxT

N

N∑
i=1

ei

]
.

Notice that we need mN to be at least
Õ(T 2log(1/δ)), so that γ̃N and lmax

√
2 log(1/δ)
mN

are negligible. This leads to the following theorem:

Theorem A.3. For the proposed NEIL algorithm,
with probability at least 1 − δ, when mN is
Õ(T 2log(1/δ)), there exists a policy π̂ ∈ π̂1:N

s.t. J(π̂) ≤ T [ε̃N + 2lmaxT
N

∑N
i=1 ei] +O(1).

The theorem shows that the cost of NEIL can
still be bounded in the finite sample setting. Com-

paring this bound with the bound under the infinite
sample setting, we can observe that the bound is
still related to ei, the probability that π̂i takes a
confident but incorrect action under dπ∗ .

B Implementation Details

B.1 Interactive Semantic Parsing Framework

Our system assumes an interactive semantic pars-
ing framework to collect user feedback. In experi-
ments, this is implemented by adapting MISP (Yao
et al., 2019b), an open-sourced framework5 that
has demonstrated a strong ability to improve test-
time parsing accuracy. In this framework, an agent
is comprised of three components: a world model
that wraps the base semantic parser and a feedback
incorporation module to interpret user feeds and
update the semantic parse, an error detector that
decides whether to request for user intervention,
and an actuator that delivers the agent’s request by
asking a natural language question, such that users
without domain expertise can understand.

We follow MISP’s instantiation for text-to-SQL
tasks to adopt a probability-based uncertainty es-
timator as the error detector, which triggers user
interactions when the probability of the current de-
cision is lower than a threshold. The actuator is
instantiated by a grammar-based natural language
generator. We use the latest version of MISP that
allows multi-choice interactions to improve the sys-
tem efficiency, i.e., when the parser’s current de-
cision is validated as wrong, the system presents
multiple alternative options for user selection. An
additional “None of the above options” option is
included in case all top options from the system
are wrong. Figure 1 shows an example of the user
interaction. From there, the system can derive a cor-
rect decision to address its uncertainty (e.g., taking
“Player” as a WHERE column).

As a general interactive semantic parsing frame-
work, MISP has its advantage of being general-
izable to different kinds of semantic parsers (as
long as their parsing process can be formulated as
taking a sequence of actions in their respective ac-
tion space) and various logical forms (e.g., lambda
expressions). Although it could be non-trivial to
instantiate such an interactive system, we note that
it is a one-time effort for all datasets of the same
logical form.

Example of Non-sketch-based Parsers. In addi-

5https://github.com/sunlab-osu/MISP.

https://github.com/sunlab-osu/MISP

tion to the example of the SQLova parser (Hwang
et al., 2019) that we provide in Section 3, here we
show how the EditSQL parser (Zhang et al., 2019)
is formulated under MISP. Unlike SQLova, Edit-
SQL does not assume any SQL sketch; it instead
generates a SQL query “token by token”.6 Con-
sider the SQL query in Figure 1. EditSQL takes
actions: a1=“SELECT”, a2=“COUNT”, a3=“(”,
a4=“School/Club Team”, a5=“)”, etc. There-
fore, the action space of EditSQL consists of all
SQL keywords, grammatical constituents (e.g.,
“(”), and available table columns. In this case,
MISP only validates semantically meaningful ac-
tions (including aggregators, operators, column
names, etc.) while skipping others (including triv-
ial symbols like “(” and most SQL keywords7).

User Simulator. Our experiments train each sys-
tem with simulated user feedback. To this end, we
build a user simulator similar to the one used by
Yao et al. (2019b) in MISP, which can access the
ground-truth SQL queries. It gives yes/no answer
or selects a choice by directly comparing the sam-
pled policy action with the true one in the gold
query. When the true option is not presented within
the system provided choices, the user is simulated
to select “None of the above options”.

B.2 WikiSQL Experiment Details

Dataset&Model. Our main experiments consider
the WikiSQL benchmark dataset (Zhong et al.,
2017),8 which contains 56,355/8,421/15,878
question-SQL query pairs in the train-
ing/validation/test set. We use exactly the
same data split as Zhong et al. (2017).

We choose SQLova (Hwang et al., 2019), one of
the open-sourced9 top-performing semantic parser
on WikiSQL, as the base parser, which ensures rea-
sonable model capability to study continual learn-
ing. Hyper-parameters are set the same as the
ones recommended by the SQLova authors on their
GitHub repository,10 except that we use a learning
rate of 1e-5 for fine-tuning the BERT model. Em-
pirically we found out this relatively larger learning

6EditSQL considers a column name as a single “to-
ken”, although it may actually contain several words (e.g.,
School/Club Team).

7Except WHERE, GROUP BY, ORDER BY and HAVING;
see Appendix B.3 for details.

8https://github.com/salesforce/WikiSQL.
9https://github.com/naver/sqlova.

10https://github.com/naver/sqlova#
running-code.

rate can greatly accelerate the model learning with-
out affecting the model performance significantly.
The total number of model parameters is around
118M, with 110M from BERT-Base (Uncased)11

and 8M from the SQLova parser side.
Early stop is used to accelerate model training in

each training iteration. Specifically, we stop model
training if it does not show improvement on the
validation set for a consecutive number of epochs.
We set this number to 10 before the 30-th training
iteration when the total training data is in a rela-
tively small size, and decay it to 5 after the 30-th
iteration. We follow SQLova when preprocessing
the WikiSQL data.

Experimental Setup. We study a “continual
learning” problem and experiment various systems
with three initialization settings, as suggested by
our theoretical analysis (Section 5). Specifically,
we use 10% (5,636 pairs), 5% (2,818 pairs), and
1% (564 pairs) of the total training data for parser
initialization, respectively.

In each initialization setting, the remaining train-
ing data is used to simulate user questions that a sys-
tem receives after deployment. The user questions
come in a random order. We repeat three random
runs (i.e., three random orders of user questions)
and report the average system performance. No-
tice that, we ensure each system receive the same
user question (but may have different user feedback
depending on their interaction designs) during itera-
tive training, for a fair comparison. Systems update
(retrain) their base semantic parsers periodically
for every 1,000 user questions.

Metrics. In the end of each iteration, we evaluate
the system’s performance, including:
• Parsing accuracy. We measure the query

match accuracy (i.e., logical form accuracy)
using the script from SQLova implementation.

• An accumulated number of user/expert anno-
tations (introduced in Section 6.3). Different
systems request different kinds of user/expert
annotations. Therefore, even when serving
the user on the same user question, different
systems require different numbers of annota-
tions. This metric sums up the total number
of annotations that each system has requested
after each training iteration.

Calculating the aforementioned metrics allow us to
plot Figure 2 and Figure 4.

11https://github.com/google-research/
bert#pre-trained-models.

https://github.com/salesforce/WikiSQL
https://github.com/naver/sqlova
https://github.com/naver/sqlova#running-code
https://github.com/naver/sqlova#running-code
https://github.com/google-research/bert#pre-trained-models
https://github.com/google-research/bert#pre-trained-models

Compute. We complete experiments on Nvidia
GeForce RTX 2080Ti (11GB). Models are all im-
plemented using PyTorch.12 The run time for each
training iteration varies depending on the accumu-
lated training data size. To finish the 50+ iterations
of (re-)training, each system takes around 15 days.
In the weak 1% initialization case, the Binary User
baseline takes less time (around 10 days), since
most of its predicted queries are wrong and thus
are not included into its training data.

B.3 EditSQL Experiment Details

Data&Model. The Spider dataset (Yu et al., 2018)
contains 8,421 question-SQL pairs for training and
1,034 pairs for validation.13 The test set is not
publicly available and is thus not used in our exper-
iments.

We choose EditSQL (Zhang et al., 2019) as
the base semantic parser,14 since it is one of the
open-sourced state-of-the-art models on Spider.
All hyper-parameters are set following (Zhang
et al., 2019). Pre-trained BERT model is also
used. Totally there are around 120M parameters in
the model, with 110M from the BERT-Base (Un-
cased)15 and 10M from the EditSQL parser side.
Early stop is additionally used to accelerate model
training. Specifically, we stop model training when
it does not show improvement on validation for 5
consecutive epochs.

In the data preprocessing step, EditSQL
transforms each gold SQL query into a sequence
of tokens, where the From clause is removed
and each column Col is prepended by its paired
table name, i.e., Tab.Col. However, we ob-
serve that sometimes this transformation is not
convertible. For example, consider the question
“what are the first name and last name of all candi-
dates?” and its gold SQL query: “SELECT
T2.first name , T2.last name
FROM candidates AS T1 JOIN
people AS T2 ON T1.candidate id
= T2.person id”. EditSQL transforms this
query into : “select people.first name
, people.last name”. The transformed
sequence accidentally removes the information
about table candidates in the original SQL

12https://pytorch.org/.
13https://github.com/taoyds/spider.
14https://github.com/ryanzhumich/

editsql.
15https://github.com/google-research/

bert#pre-trained-models.

query, leading to semantic meaning inconsistent
with the question. When using such erroneous
sequences as the gold targets in model training,
we cannot simulate consistent user feedback,
e.g., when the user is asked whether her query is
relevant to the table candidates, the simulated
user cannot give an affirmative answer based on
the transformed sequence. To avoid inconsistent
user feedback, we remove question-SQL pairs
whose transformed sequence is inconsistent with
the original gold SQL query, from the training
data. This can be easily done by using EditSQL’s
post-processing script to convert a preprocessed
sequence back to the SQL format. Only when the
converted query is the same as the original one,
the transformation is consistent. This reduces the
size of the training set from 8,421 to 7,377. The
validation set is kept untouched for fair evaluation.

The implementation of interactive semantic pars-
ing for EditSQL is the same as Section B.1, ex-
cept that, in order to cope with the complicated
structure of Spider SQL queries, for columns in
WHERE, GROUP BY, ORDER BY and HAVING
clauses, we additionally provide an option for
the user to “remove” the clause, e.g., removing
a WHERE clause by picking the “The system does
not need to consider any conditions.” option. We
also adjust the “semantic unit” definition in MISP16

to deal with the autoregressive decoding of Edit-
SQL. For example, instead of asking first about a
SELECT column and then about its aggregator, we
define one semantic unit to inquire about both the
column and its aggregator.

To instantiate NEIL, the confidence threshold µ
is 0.995 as we observe that EditSQL tends to be
overconfident.

Experimental Setup. We experiment with one
initialization setting, using 10% of the total training
data (i.e., 737 question-SQL pairs), and systems
update (retrain) their base semantic parsers periodi-
cally for every 1,000 user questions as in WikiSQL
experiments. We report system performance av-
eraged over three random runs (i.e., three random
orders of user questions).

We also tried using more training data for ini-
tialization. However, since the total training data
in Spider is very limited in size, more initializa-
tion data means fewer data for simulating online

16https://github.com/sunlab-osu/MISP/
blob/multichoice_q/MISP_SQL/tag_seq_
logic.md.

https://pytorch.org/
https://github.com/taoyds/spider
https://github.com/ryanzhumich/editsql
https://github.com/ryanzhumich/editsql
https://github.com/google-research/bert#pre-trained-models
https://github.com/google-research/bert#pre-trained-models
https://github.com/sunlab-osu/MISP/blob/multichoice_q/MISP_SQL/tag_seq_logic.md
https://github.com/sunlab-osu/MISP/blob/multichoice_q/MISP_SQL/tag_seq_logic.md
https://github.com/sunlab-osu/MISP/blob/multichoice_q/MISP_SQL/tag_seq_logic.md

user questions and conducting continual learning.
This leads to less clear experimental observations
(e.g., even the Full Expert system shows fluctua-
tion, probably due to data redundancy or an issue
with model architecture capability). Therefore, we
only focus on the 10% initialization setting.

Metrics. We measure each system similarly as in
WikiSQL experiments. For parsing performance,
we calculate the exact match accuracy using scripts
from the EditSQL implementation.

Compute. We complete experiments on Nvidia
GeForce RTX 2080Ti (11GB). Models are imple-
mented using PyTorch. The run time for each train-
ing iteration varies depending on the accumulated
training data size. Finishing the whole iterative
learning takes around 5 days for all systems.

C Additional Experimental Results

C.1 Additional SQLova Results

Figure 4 shows different systems’ performance on
WikiSQL validation set. For Binary User(+Expert),
it is hard to quantify “one annotation”, which varies
according to the actual database size and the query
difficulty. As a compromise, we approximate this
number by calculating it in the same way as Full
Expert, with the assumption that in general validat-
ing execution results is as hard as validating the
SQL query itself.

We also show in Figure 5 the average number of
annotations (i.e., user interactions) that MISP-NEIL

requires per question during the iterative training.
Overall, as the base parser is further trained, our
system tends to request fewer user interactions. In
most cases throughout the training, the system re-
quests no more than one user interaction, demon-
strating the annotation efficiency of our NEIL algo-
rithm.

C.2 Connection to Theoretical Analysis

As we proved in Section 5, the performance gap
between our proposed NEIL algorithm and the su-
pervised approach is mainly decided by 1

N

∑N
i=1 ei,

an average probability that π̂i makes a confident but
wrong decision under dπ∗ (i.e., given a gold partial
parse) overN training iterations. More specifically,
from our proof of Lemma A.1, ei can be expressed
as:

ei =
1

T

T∑
t=1

eit =
1

T

T∑
t=1

ε̃it(1− βit),

where ε̃it denotes policy π̂i’s conditional error rate
under dtπ∗ when it does not query the expert (i.e.,
being confident about its own action) at step t, and
1−βit denotes the probability that π̂i does not query
the expert under dtπ∗ . ε̃it(1− βit) thus represents a
joint probability that π̂i makes confident but wrong
action under dtπ∗ at step t.

To show a reflection of our theoretical analy-
sis on the experiments, we present the values of
the following three variables during training: (1)
ε̃i = 1

T

∑T
t=1 ε̃it, the average value of ε̃it over T

time steps. A smaller ε̃i implies a lower conditional
error rate and thus a smaller ei and a smaller per-
formance gap. (2) βi = 1

T

∑T
t=1 βit, the average

value of βit over T time steps. A smaller βi (i.e., a
larger 1− βi) means a smaller probability that π̂i
queries the expert (i.e., being more confident). This
could lead to a larger ei and thus a larger perfor-
mance gap. (3) ei as defined previously. A smaller
ei indicates a smaller performance gap between our
algorithm and the supervised approach.

We plot the results of our MISP-NEIL system
(based on SQLova) in Figure 6. For all initializa-
tion settings, we observe that the base parser tends
to make more confident actions under a gold par-
tial parse (i.e., decreasing βi) when it is trained
for more iterations. Meanwhile, the error rate of
its confident actions under a gold partial parse is
also reduced (i.e., decreasing ε̃i). When combin-
ing the two factors, ei is shown to keep decreasing,
implying that with more iterations that the parser
is trained, it gets a tighter cost bound and better
performance.

Finally, we notice that a differently initialized
parser can end up with different performance. This
is reasonable since a better initialized parser pre-
sumably should have a better overall error rate.
This is also consistent with our observation in the
main experimental results (Section 6.3).

Figure 4: Parsing accuracy on WikiSQL validation set when systems are trained with various numbers of
user/expert annotations (top) and for different iterations (bottom). We experiment systems with three initializa-
tion settings, using 10%, 5% and 1% of the training data respectively.

Figure 5: Average number of user annotations/interactions that MISP-NEIL requests for each user question during
iterative training (on WikiSQL), when the parser is initialized using 10%, 5% and 1% of training data.

(a) (b) (c)

Figure 6: The values of ε̃i (a), βi (b) and ei (c) in MISP-NEIL throughout the training (on WikiSQL validation set),
under different initialization settings.

