
Extracting Product Information from Email Receipts
Using Markov Logic

Stanley Kok
∗

Department of Computer Science & Engineering
University of Washington

Seattle, WA 98195
koks@cs.washington.edu

Wen-tau Yih
Microsoft Research
One Microsoft Way

Redmond, WA 98052
scottyih@microsoft.com

ABSTRACT
Email receipts (e-receipts) frequently record e-commerce trans-
actions between users and online retailers, and contain a
wealth of product information. Such information could be
used in a variety of applications if it could be reliably ex-
tracted. However, extracting product information from e-
receipts poses several challenges. For example, the high la-
bor cost of annotating e-receipts makes traditional super-
vised approaches infeasible. E-receipts may also be gener-
ated from a variety of templates, and are usually encoded in
plain text rather than HTML, making it difficult to discover
the regularity of how product information is presented. In
this paper, we present an approach that addresses all these
challenges. Our approach is based on Markov logic [22], a
language that combines probability and logic. From a cor-
pus of unlabeled e-receipts, we identify all possible templates
by jointly clustering the e-receipts and the lines in them.
From the non-template portions of e-receipts, we learn pat-
terns describing how product information is laid out, and
use them to extract the product information. Experiments
on a corpus of real-world e-receipts demonstrate that our
approach performs well. Furthermore, the extracted infor-
mation can be reliably used as labeled data to bootstrap a
supervised statistical model, and our experiments show that
such a model is able to extract even more product informa-
tion.

1. INTRODUCTION
Many e-commerce transactions (e.g., product purchase,

order cancellation, etc.) are recorded in email receipts (e-
receipts), which are a rich source of product information.
Such information, when adequately extracted, can enable a
huge variety of applications.

For example, a software agent can automatically keep
track of the transactions a user has executed, and compile
a database of purchased products. Such a database can be
used to remind a user of the expiration of a warranty, or to
periodically suggest the replenishment of products such as
batteries, toners, or ink cartridges.

From the perspective of an email service provider, trans-
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actional information aggregated from e-receipts can be used
for building a recommendation system. If a set of products
are often observed as being purchased together in e-receipts,
then these products can be treated as being related. When
the system has identified what a user has bought by mining
his e-receipt, it can automatically suggest related products
to the user. For example, if the user has bought a cell phone,
the system may suggest Bluetooth earphones; if the prod-
uct is a movie DVD, the system may suggest other related
movies.

Business intelligence can also be collected from e-receipts.
From the product information extracted from a large collec-
tion of e-receipts, we can learn about the business volume of
retailers, track the price range of products over time, iden-
tify trends in product popularity, build user profiles, etc.

All the above applications rely on the core technology of
production information extraction. There are three chal-
lenges in mining product information from e-receipts. First,
there is no training data, and hand-labeling the product in-
formation in e-receipts from every retailer is a costly and
error-prone enterprise. Hence, an unsupervised approach
is required. Second, a lot of e-receipts are not structured,
i.e., encoded in standard markup languages like HTML. (All
the e-receipts in our corpus are in plain text, and only about
40% are also encoded in HTML.) However, the e-receipts are
also not completely unstructured. Most, if not all, of the e-
receipts are generated from predefined templates. (See Fig-
ure 1 for examples of e-receipts that are generated from the
same template.) E-receipts from the same template share
features, which allow us to reverse engineer the template
from the e-receipts. We can then identify the non-template
elements in each e-receipt, and extract them as potential
product information. Third, a corpus of e-receipts may be
generated from many templates, and we must identify which
e-receipts are generated from the same template. Even when
the e-receipts are from the same retailer, they can still be
generated from several different templates (e.g., templates
for purchase confirmation, cancellation, etc.).

Previous product mining approaches require labeled train-
ing data (i.e., are supervised) [14, 18, 16, 25], can only work
with marked-up input (e.g., HTML webpages) [4, 9, 1, 27,
3], or require their input to be generated from the same
template [4, 9, 1].

In this paper, we present PIEML, a system that addresses
all three challenges, i.e., it is unsupervised, works on plain-
text e-receipts, and learns which e-receipts are from the same
template. PIEML is defined using Markov logic [22], and



is short for Product Information Extraction with Markov
Logic. PIEML works by jointly clustering e-receipts and
the lines in them. Each cluster of e-receipts corresponds
to a type of transaction, and are generated from the same
template. Each cluster of lines corresponds to (part of) a
template when its lines appear in most of the e-receipts in a
cluster. For each e-receipt cluster, PIEML marks the tem-
plate lines in its e-receipts. On the remaining lines, PIEML
learns the layout of the product information, and uses it to
extract the product information.

We applied PIEML to a real-world corpus of e-receipts,
and found that it extracted product information with high
precision. We also used the learned layouts and extracted
product information to label the e-receipts, and trained a
standard conditional random field (CRF) [15] on the labeled
data. We found that the CRF performed well in extracting
new product information.

We begin by reviewing Markov logic in the next section.
Next we describe our PIEML system (section 3), and re-
port our experiments with it (section 4). Finally, we discuss
related work (section 5), and future work (section 6).

2. MARKOV LOGIC
Markov logic combines first-order logic and Markov net-

works so as to model both relational dependencies and un-
certainty. A key advantage of Markov logic is that it allows
us to easily define a statistical model by simply writing in-
tuitive (weighted) first-order rules.

In first-order logic [10], formulas are constructed using
four types of symbols: constants, variables, functions, and
predicates. (In this paper we use only function-free logic.)
Constants represent objects in the domain of discourse (e.g.,
people: Anna, Bob, etc.). Variables (e.g., x, y) range over
the objects in the domain. Predicates represent relations
among objects (e.g., Friends), or attributes of objects (e.g.,
Student). Variables and constants may be typed. An atom
is a predicate symbol applied to a list of arguments, which
may be variables or constants (e.g., Friends(Anna, x)). A
ground atom is an atom all of whose arguments are con-
stants (e.g., Friends(Anna, Bob)). A world is an assignment
of truth values to all possible ground atoms. A database is a
partial specification of a world; each atom in it is true, false
or (implicitly) unknown. A database is a partial specifica-
tion of a world; each atom in it is true, false or (implicitly)
unknown. In this paper, we make a closed-world assump-
tion: a ground atom not in the database is assumed to be
false. Formulas are recursively constructed from atoms us-
ing logical connectives and quantifiers. If F1 and F2 are
formulas, the following are also formulas: ¬F1 (negation),
which is true iff F1 is false; F1 ∨ F2 (disjunction), which is
true iff F1 or F2 is true; F1∧F2 (conjunction), which is true
iff both F1 and F2 are true; F1 ⇒ F2 (implication), which
is true iff F1 is false or F2 is true; F1 ⇔ F2 (equivalence),
which is true iff F1 and F2 have the same truth value; ∃x F1

(existential quantification), which is true iff F1 is true for
at least one object x in the domain; and ∀x F1 (universal
quantification), which is true iff F1 is true for every object
x in the domain; Formulas allows us to represent complex
dependencies among several atoms.

A Markov network [20] is a model for the joint distribution
of a set of variables X = (X1, . . . , Xn) ∈ X . It is composed
of an undirected graph G and a set of potential functions φk.
The graph has a node for each variable, and the model has a

potential function for each clique in the graph. A potential
function is a non-negative real-valued function of the state of
the corresponding clique. The joint distribution represented
by a Markov network is given by P (X=x) = 1

Z

Q
k φk(x{k})

where x{k} is the state of the kth clique (i.e., the state
of the variables that appear in that clique). Z, known as
the partition function, is given by Z =

P
x∈X

Q
k φk(x{k}).

Markov networks are often conveniently represented as log-
linear models, with each clique potential replaced by an ex-
ponentiated weighted sum of features of the state, leading

to P (X=x) = 1
Z

exp
“P

j wjfj(x)
”

. A feature may be any

real-valued function of the state. This paper will focus on
binary features, fj(x) ∈ {0, 1}. In the most direct transla-
tion from the potential-function form, there is one feature
corresponding to each possible state x{k} of each clique, with
its weight being log φk(x{k}). This representation is expo-
nential in the size of the cliques. However, we are free to
specify a much smaller number of features (e.g., logical func-
tions of the state of the clique), allowing for a more compact
representation than the potential-function form, particularly
when large cliques are present. Markov logic takes advan-
tage of this.

A first-order knowledge base (KB) is a set of first-order
formulas, which can be viewed as hard constraints on the
set of possible worlds. If a world violates a formula, it
has zero possibility. This causes first-order KBs to be brit-
tle. To fix this, Markov logic softens the constraints by
attaching weights to the formulas so that when a world
violates a formula it becomes less probable, but not im-
possible. More formally, a Markov logic network (MLN)
is a set of weighted first-order formulas. Together with a
set of constants representing objects in the domain, it de-
fines a Markov network with one node per ground atom and
one feature per ground formula. The weight of a feature
is the weight of the first-order formula that originated it.
The probability distribution over possible worlds x spec-
ified by the ground Markov network is given by P (X =

x) = 1
Z

exp
“P

i∈F
P
j∈Gi

wigj(x)
”

, where Z is the parti-

tion function, F is the set of all first-order formulas in the
MLN, Gi is the set of groundings of the ith first-order for-
mula, and gj(x) = 1 if the jth ground formula is true and
gj(x) = 0 otherwise. Markov logic enables us to compactly
represent complex models in non-i.i.d. domains. General
algorithms for inference and learning in Markov logic are
discussed in [22].

3. PRODUCT INFO EXTRACTION
We call our algorithm PIEML, for Product Information

Extraction with Markov Logic. PIEML takes as input a set
of e-receipts sent from a common retailer email address, and
outputs the product information in them. It makes two as-
sumptions. First, it assumes that product information is laid
out in two simple formats that can be expressed as regular
expressions. These regular expressions are flexible enough
to represent many different product layouts. Second, it as-
sumes the existence of a database of product names, which
it uses to match candidate product names that it extracts.
The matched product names are then used to validate the
product information layouts that PIEML creates.

PIEML is made up of two components: TemplateMarker
and LayoutDiscover. TemplateMarker jointly clusters e-
receipts and the lines in them. Each cluster of e-receipts



Figure 1: Clusters created by TemplateMarker. The
e-receipt and line clusters are respectively on the
left and right. The e-receipts in a cluster are gen-
erated from the same template. The bold lines con-
tain product information, and the non-bold lines are
part of a template. Each line cluster is linked to e-
receipt clusters that contain at least one of its lines.
E-receipt and line clusters are linked together as a
cluster combination.

corresponds to a type of transaction, and are generated from
the same template. Each cluster of lines potentially corre-
sponds to (part of) a template. TemplateMarker marks the
lines in e-receipts that belong to a template, and hands the
clusters of marked e-receipts to LayoutDiscover. For each
cluster, LayoutDiscover learns how product information is
laid out on the non-template lines in the e-receipts, and ex-
tracts the product information. In this paper, for simplicity,
we focus on extracting product name and price.

3.1 Template Marking
TemplateMarker takes as input a set of e-receipts from

the same retailer email address, and outputs e-receipt clus-
ters. It marks the lines in the e-receipts that are part of a
template. TemplateMarker works by jointly clustering the e-
receipts and the lines in them in a bottom-up agglomerative
manner, allowing information to propagate from one cluster
to another as they are formed. This process groups together
e-receipts with many lines in common (i.e., e-receipts gen-
erated from the same template), and groups together lines
that appear together in many e-receipts (i.e. lines that are
part of a template). The number of clusters need not be
specified in advance.

TemplateMarker’s statistical model is defined using Markov
logic by specifying a few simple rules. We define a binary

Figure 2: Illustration of LayoutDiscover algorithm.
The pattern learned in step 5 is used to extract new
product information.

predicate HasLine(e, l), which is true if and only if the e-
receipt in its first argument contains the line in its second
argument. (A line is defined as sequence of non-newline
characters that are terminated by a newline.) We use e and
l to respectively denote the first and second arguments of
HasLine; E and L to respectively denote a set of e-receipts
and a set of lines; γe and ΓE to respectively denote a cluster
and clustering (i.e., a partitioning) of e-receipts; and γl and
ΓL to respectively denote a cluster and clustering of lines.
If e and l are respectively in cluster γe and γl, we say that
(e, l) is in the cluster combination (γe, γl), and that (γe, γl)
contains the ground atom HasLine(e, l). We say (γe, γl)
contains a true ground atom if there exist e ∈ γe and l ∈ γl
such that the ground atom HasLine(e, l) is true.

The learning problem in TemplateMarker consists of find-
ing the cluster assignment Γ = (ΓE ,ΓL) that maximizes the
posterior probability P (Γ|D) ∝ P (Γ, D) = P (Γ)P (D|Γ),
where D is a vector of truth assignments to the observable
HasLine(e, l) ground atoms. The prior P (Γ) is simply an
MLN containing two rules. The first rule states that each
e-receipt or line belongs to exactly one cluster:

∀x∃1γ x ∈ γ

(x could be an e-receipt or line, and γ could be a cluster
of e-receipts or lines.) This rule is hard, i.e., it has infinite
weight and cannot be violated. If this rule violated, P (Γ)
and consequently P (Γ|D) equal zero.

The second rule is

∀γe, γl ∃ e, l e ∈ γe ∧ l ∈ γl
with negative weight −∞<−λ < 0, which imposes an ex-
ponential prior on the number of cluster combinations to
prevent the proliferation of cluster combinations (and thus



Algorithm 1: TemplateMarker Algorithm

function TemplateMarker(E, k, f)
input: E, a set of e-receipts from the same retailer email address.

Each e-receipt is an ordered multiset of lines.
k, minimum e-receipt cluster size.
f , minimum fraction of e-receipts in a cluster that a line

must appear in before it is considered part of a template.
output: ΓE , a set of e-receipt clusters. Each e-receipt has its

template lines marked.
calls: CreateTrueGroundAtoms(E), returns a set of true

HasLine ground atoms. The set contains a HasLine(e, l)
ground atom for every email e ∈ E that contains line l.

GetAllLines(E), returns a set of the lines in emails in E.
ClusterPairWithBestGain(ΓT ), returns the pair of clusters

in ΓT that gives the highest improvement in log-posterior
when merged.

MarkLine(l, γe), marks line l in γe’s e-receipts as being
part of a template.

D ← CreateTrueGroundAtoms(E)
L← GetAllLines(E)
for each T ∈ {E,L}

ΓT ← ∅
for each x ∈ T

ΓT ← ΓT ∪ {γx} ({γx} is a unit cluster containing x)
C ← ∅ (C contains cluster combinations)
for each true ground atom HasLine(e, l) ∈ D
C ← C ∪ {(γe, γl)}

repeat
for each T ∈ {E,L}

(γbest, γ
′
best)← ClusterPairWithBestGain(ΓT )

if {(γbest, γ
′
best)} 6= ∅

γnew ← γbest ∪ γ′
best

ΓT ← ( ΓT \ {γbest, γ
′
best} ) ∪ {γnew}

for each γ ∈ {γbest, γ
′
best}

if T = E
for each (γ, γl) ∈ C
C ← (C \ {(γ, γl)} ) ∪ {(γnew, γl)}

else
for each (γe, γ) ∈ C
C ← (C \ {(γe, γ)} ) ∪ {(γe, γnew)}

until no clusters are merged
for each γe ∈ ΓE

if |γe| ≥ k
for each (γe, γl) ∈ C

for each l ∈ γl

if l appears in more than f × |γe| e-receipts in γe

MarkLine(l, γe)
else ΓE ← ΓE \ γe

return ΓE

clusters), and consequent overfitting. This rule helps to
‘compress’ e-receipts and lines together into clusters. The
parameter λ is fixed during learning, and is the penalty in
log-posterior incurred by adding a cluster combination.

The main MLN for the likelihood P (D|Γ) contains the
following rules. For each cluster combination (γe, γl) that
contains a true ground atom, the MLN contains the rule:

∀e, l e ∈ γe ∧ l ∈ γl ⇒ HasLine(e, l)

We call these atom prediction rules because they state that
the truth value of an atom is determined by the cluster com-
bination it belongs to. These rules are soft. At most there
can be one such rule for each true ground atom (i.e., when
each e-receipt and line is in its own cluster). These rules ‘en-
courage’ e-receipts that are generated from the same tem-
plate to be clustered together. They also ‘encourage’ lines
that belong to the same template to be clustered together.
This causes the combination of e-receipt cluster and line
cluster to be highly predictive of the template lines in each
e-receipt.

Algorithm 2: LayoutDiscover Algorithm

function LayoutDiscover(ΓE , DB, n,m)
input: ΓE , a set of e-receipt clusters from the same retailer email

address. The e-receipts have their template lines marked.
DB, database of product names.
n, minimum length of candidate product name
m, minimum number of product names in DB that a

pattern must match
output: DB′, database of (product name, price) pairs.
calls: GetContiguousNonTemplateLines(e), returns a set of

regions of contiguous non-template lines in e-receipt e.
GetAllContiguousSubRegions(Λ), returns all sub-regions of

contiguous non-template lines from the region Λ. Each
sub-region is an ordered multiset of contiguous non-
template lines.

GetPattern(L), returns one of the two pre-specified formats
that the lines in L conform to; returns ∅ if L does not
match any format.

ReplaceNumberAndMoney(p), marks the <str>s in pattern p
that are numbers or monetary values.

Match(<str>), DB), returns true if <str> matches a product
name in database DB; otherwise returns false.

DB′ ← ∅ (DB′ contains new product names and prices)
for each γe ∈ ΓE

P ← ∅ (P is a set of patterns)
for each e ∈ γe

Λ← GetContiguousNonTemplateLines(e)
Λ′ ← GetAllContiguousSubRegions(Λ)
for each L ∈ Λ′ (L is an ordered set of contig. non-template lines)
p← GetPattern(L)
if p 6= ∅
p← ReplaceNumberAndMoney(p)
for each <str> ∈ p

if NumTokens(<str>) ≥ n and MatchInDB(<str>, DB)
p′ ←MarkAsProductName(<str>, p)
if p′ ∈ P
NumMatches[p′]← NumMatches[p′] + 1

else
P ← P ∪ p′

NumMatches[p′]← 1
p← GetPatternWithMostMatches(P,NumMatches)
if NumMatches[p] ≥ m

for each γe ∈ ΓE (use pattern p to extract product info)
Λ← GetContiguousNonTemplateLines(e)
Λ′ ← GetAllContiguousSubRegions(Λ)
for each L ∈ Λ′

(name, price)← ExtractProductInfo(p, L)
if (name, price) 6∈ DB
DB′ ← (name, price)

return DB′

We also have the rule

∀e, l
`Vm

i=1 ¬(e ∈ γie ∧ l ∈ γil )
´
⇒ HasLine(e, l)

where (γ1
e , γ

1
l ), . . . , (γme , γ

m
l ) are cluster combinations con-

taining true ground atoms. This rule accounts for allHasLine
ground atoms (all false) that are not in any cluster combi-
nation with true ground atoms. We call such a rule a default
atom prediction rule because its antecedents are analogous
to a default cluster combination that contains all atoms that
are not in the cluster combinations of any atom prediction
rule.

TemplateMarker simplifies the learning problem by per-
forming hard assignments of e-receipts and lines to clusters
(i.e., instead of computing probabilities of cluster member-
ship, an e-receipt/line is simply assigned to its most likely
cluster). The weights and the log-posterior can now be com-
puted in closed form (see appendix).

Algorithm 1 shows the pseudocode of TemplateMarker.
TemplateMarker simply searches over cluster assignments,
evaluating each one by its posterior probability. It begins



by assigning each e-receipt e and line l to its own cluster {e}
and {l}, and creating a cluster combination ({e}, {l}) for
each true ground atom HasLine(e, l). Next it creates can-
didate pairs of clusters of each type (i.e., e-receipt or line),
and for each pair, it evaluates the gain in posterior prob-
ability if its clusters are merged. It then chooses the pair
that gives the largest gain to be merged. When e-receipt
clusters γe and γ′e are merged to form γnewe , each (γe, γl) is
replaced with (γnewe , γl) (and similarly for cluster combina-
tions containing γ′e). To avoid trying all possible candidate
pairs of clusters, TemplateMarker only tries to merge γe and
γ′e if they appear in cluster combinations (γe, γl) and (γ′e, γl)
(i.e., they have a line cluster in common). Line clusters are
merged in the same way. In this manner, TemplateMarker
incrementally merges clusters until no merges can be per-
formed to improve posterior probability. After that, for each
e-receipt cluster γe containing at least k e-receipts, it finds
all cluster combinations (γe, γl) that contains true ground
HasLine atoms. For each line in γl, it marks that line as
being part of a template in all of γe’s e-receipts if the line
appears in more than f fraction of the e-receipts.

TemplateMarker is similar to the MRC and SNE algo-
rithms [12, 13]. It differs from them in the following ways.
TemplateMarker finds a single clustering of e-receipts and
lines, whereas MRC can find multiple clusterings. Tem-
plateMarker does not cluster predicates since there is only
one predicate (i.e., HasLine), whereas both MRC and SNE
cluster predicates. TemplateMarker does not contain a rule
of SNE that states that symbols tend to be in different
clusters. SNE uses this rule to combat the extreme noise
and sparsity of its Web data, characteristics which are not
present in our e-receipt corpus. Empirically, we found that
we perform better on our e-receipt corpus when we set the
weight of this rule to zero (which is equivalent to excluding
the rule).

3.2 Product Layout Discovery
LayoutDiscover takes as input the e-receipt clusters out-

put by TemplateMarker, and outputs a database of product
names and prices. Each e-receipt in the clusters has its tem-
plate lines marked. LayoutDiscover assumes that product
names and prices are laid out on contiguous non-template
lines in two simple user-specified formats, which are specific
to e-receipts. (A set of non-template lines are contiguous if
they are not separated by any template lines. See Figure 1
for examples of non-template lines.) The two formats can be
represented in regular expression as:
<str>(<sep><str>)+(<newline>(<str>(<sep><str>)*))*

and (<str><sep>*:<sep>*<str>(<newline>|<sep>)*)+.
The symbol <sep> represents a separator that begins with a
tab or two contiguous whitespaces, followed by any combi-
nation of tabs and whitespaces (possibly none). <str> rep-
resents a string that is a potential product name or price.
It can contain any characters except tabs and two or more
contiguous whitespaces. (The bold lines in the e-receipts in
Figure 1 show examples of the two formats.)

Algorithm 2 shows the pseudocode of LayoutDiscover.
LayoutDiscover iterates over the clusters of e-receipts learned
by TemplateMarker. For each e-receipt in a cluster, Lay-
outDiscover extracts the contiguous regions of non-template
lines from them. For each region, it finds all sub-regions of
contiguous lines that satisfy any of the two formats. (For
example, in each of the lower two e-receipts in Figure 1,

there are 6 sub-regions formed from three contiguous non-
template lines l0, l1, l2: {l0, l1, l2}, {l0, l1}, {l1, l2}, {l0}, {l1},
and {l2}.) For each sub-region, it instantiates a pattern
representing its layout. (See Figure 2 for an illustration of
LayoutDiscover from this step onwards.) LayoutDiscover
identifies which <str>s in the pattern are the product name
and price. (We assume there are only one product name and
price in each sub-region). It first identifies <str>s that are
numbers and monetary values. For each remaining <str>

with at least n tokens, it queries an existing database of
product names to check whether there is any existing prod-
uct that matches the first n tokens of <str>. If there is a
match, the <str> is marked as a potential product name.
A separate pattern is created for each matched <str>. We
keep a count of the number of product names that a pattern
matches, and only retain patterns with at least m matches.
The first monetary value (if present) that appears in the
pattern is then heuristically considered the price. For each
e-receipt cluster, LayoutDiscover may learn several patterns,
but it only retains the one with the largest number of matches.
It then uses this pattern to extract new product names (i.e.,
those that do not appear in the database) from the non-
template regions of the e-receipts that conform to the pat-
tern.

PIEML is general enough to be adapted to work in other
domains. All we need to do is to modify the formats (i.e., the
regular expressions) representing the layout of the product
information, and provide a database of product information
that is specific to the domain of interest.

4. EXPERIMENTS
In this section, we describe how we construct a corpus

of real-world e-receipts, and present the results of applying
PIEML to it. Because PIEML is fairly robust in accurately
discovering the templates and product information layouts,
product items extracted by PIEML can be reliably used to
train a statistical information extractor, which helps dis-
cover more product information. We explore this direction,
and report the result at the end of this section.

4.1 Data
Despite the fact that there are publicly available email

corpora, such as the TREC dataset [8, 7] and the Enron
corpus [11], those corpora typically do not contain a size-
able number of e-receipts. Therefore, we only conducted
our experiments on the proprietary corpus created from the
Hotmail Feedback Loop email collection.

Originally designed as a mechanism for collecting email
messages labeled as spam or non-spam, the Feedback Loop
data consists of roughly 50,000 messages per day from Hot-
mail volunteers. A message sent to a user is randomly se-
lected, regardless of whether it is headed to the inbox, junk
folder, or is deleted. The user is then asked to label this
message as either spam or non-spam. Notice that although
this sampling method is not truly uniform, internal studies
suggest that this dataset is pretty close to the mail distribu-
tion received by Hotmail users. Interested readers can find
more information about the Hotmail Feedback Loop dataset
in [26, 5].

From the non-spam emails in the Feedback Loop dataset
sampled during the period from 2006 to mid-2008, we ex-
tracted a corpus of 76,875 e-receipts sent from 16,398 unique
retailer email addresses by selecting email satisfying the fol-



Figure 3: Cumulative distribution of the number of
e-receipts from different retailers. We ranked the
retailers (i.e., sender addresses) in decreasing or-
der of the numbers of their e-receipts in our corpus.
Most messages come from a few top retailers. For
example, the top 111 retailers account for 50% of e-
receipts, and the top 2,627 retailers account for 80%
of e-receipts.

lowing criteria:

• Email subject contains the words ‘receipt’, ‘purchase’,
or ‘order’, but not the words ‘free’, ‘coupon’, or ‘off’
(words indicative of promotional messages).

• Email body has the words ‘qty’, ‘quantity’, ‘tax’, ‘item’,
‘price’, ‘total’, ‘subtotal’, or ‘amount’.

In spite of its simplicity, this heuristic method achieved high
precision (i.e., a large fraction of selected emails were actual
e-receipts). To evaluate the fraction of emails in this cor-
pus that were actual e-receipts, we randomly sampled 200
emails and found that all were e-receipts. Although training
an e-receipt classifier in a principled manner will no doubt
increase the recall (i.e., fraction of e-receipts selected from
among all e-receipts in the corpus), we focus in this paper on
extracting product information given a corpus of e-receipts,
and leave the e-receipt classifier as an item of future work.

There are several points of interest about this corpus.
Most e-receipts come from relatively few retailers. As shown
in Figure 3, 80% of the e-receipts were sent by the top 2,627
retailers, and each of them has at least 3 e-receipts in our
corpus. All the e-receipts in the corpus are encoded in plain
text, and about 40% repeat their contents in HTML. In or-
der to have a general system that can work on all e-receipts,
our method works directly on plain text without using the
structural information encoded in HTML.

4.2 Results
We applied PIEML to the corpus of e-receipts, and show

the results of template marking and product layout discov-
ery respectively.

4.2.1 Template Marking
As described in Section 3, the TemplateMarker algorithm

(Algorithm 1) builds on top of Markov logic, and concur-
rently constructs e-receipt clusters and template line clus-
ters. We divided the corpus into disjoint subsets by their
sender (retailer) email addresses, and provided each subset

in turn as the input to TemplateMarker. When running
TemplateMarker on our e-receipt corpus, we require each
e-receipt cluster to have at least 3 e-receipts, and a line to
appear in at least half of the messages in an e-receipt cluster
before it can be considered a template line (i.e., the parame-
ter values used in Algorithm 1 were k = 3 and f = 0.5). We
also set the weight λ of the second rule in the MLN defining
the prior P (Γ) to 10. In order to find a good trade-off be-
tween the coverage of e-receipts and the risk of generating
unreliable templates, we selected those values based on some
preliminary experiments. Notice that this setting effectively
ignored roughly 20% of the email in our corpus. The total
number of e-receipts that are processed by TemplateMarker
is 61,035. Among them, 60,914 (99.8%) e-receipts were clus-
tered into 3,621 templates. The average number of e-receipts
in each template cluster is 16.8, and the average number of
template clusters for each retailer is 1.39. Recall that a big
portion of e-receipts is sent from a smaller number of top
retailers. These retailers generally have more templates and
cover more e-receipts.

4.2.2 Layout Discovery
Given the 3,621 clusters of e-receipts identified by Tem-

plateMarker, we applied our LayoutDiscover algorithm (Al-
gorithm 2) to the non-template lines of these e-receipts to
generate patterns for extracting product information. One
of the important step for LayoutDiscover to conclude that
a sequence of words is a product name is to find a match in
our product database, which consists of 22.7 million entries.
To allow high-confidence pattern generation, the candidate
product name needs to contain at least 4 words. In addition,
the discovered pattern needs to match at least 10 product
names in the database before it can be considered as a valid
pattern (i.e., the parameter values used in Algorithm 2 were
n = 4 and m = 10).

Overall, when applied to our corpus of e-receipts, PIEML
extracted 40,538 pairs of product names and prices. To eval-
uate the correctness of the extracted pairs, we sampled 100
of them, and verified that they were valid product names and
prices. Although we have a fairly large product database,
only 11,454 (28.3%) product names could be found there;
29,084 (71.7%) discovered items were actually new product
names.

We found that the extracted product information is from
25,865 e-receipts (34% of total) from 76 retailers. On av-
erage, we extracted about 1.1 new (product name, price)
pairs per e-receipt from those retailers. PIEML did not ex-
tract any product information from the remaining 35,170 e-
receipts (58%) from 2,551 retailers. Analyzing the e-receipts
from those retailers, we found that PIEML did not work
on them because their product information either did not
have the two assumed formats of LayoutDiscover; or when
they did have the formats, the patterns that LayoutDiscover
learned were discarded because they extracted too few prod-
uct names that matched those in the existing database.

Even though PIEML’s recall is moderate at 34% of total
e-receipts, its precision is high at an estimated 100%. From
all the e-receipts in a large email corpus like Hotmail, it will
be able to extract a large quantity of useful product names
and prices.

Finally, the computational cost of PIEML is low – on a
2GHz, 3GB RAM machine, it took about 3 hours to finish
both TemplateMarker and LayoutDiscoverer. Notice that



this offline learning process only needs to be done once. Af-
ter the templates and layouts for a retailer are identified,
extracting product information from the e-receipts sent by
the same retailer can be done in real-time.

4.3 Bootstrapping a Supervised Learner
The high-precision predictions of PIEML allow us to use

them to learn a classifier in order to improve upon PIEML’s
recall. We investigated this direction using conditional ran-
dom fields (CRFs) [15], which is a state-of-the-art sequence
prediction model that has been shown to be effective for in-
formation extraction [17, 21, 24]. Given a text document
represented as a sequence of words, CRFs aim to predict
the label of each token, such as whether it is a part of the
product name or price, using features of each token and of
each pair of neighboring tokens.

In order to estimate the recall and precision of this ap-
proach, we took the 25,865 e-receipts from which PIEML
managed to extract product information as our dataset.
PIEML has effectively labeled the tokens in the e-receipts
that correspond to the extracted product name and price.
All other tokens in the e-receipt are labeled as not belonging
to any product name or price.

We used 119 simple features defined on individual tokens,
such as whether a token starts with an uppercase letter,
whether a token is terminated with a period, etc. We also
conjoined the features to create an additional 7021 features.
For each pair of neighboring tokens, we had features stat-
ing whether they tend to have the same label (e.g., both
are product names, or both are not). Note that we only
used features capturing characteristics in the neighborhood
of each token, and those features did not capture the reg-
ularities of LayoutDiscover’s assumed formats. We did so
because we wished to investigate how well the CRFs would
perform on e-receipts without those formats.

We divided the dataset into 5 folds based on the sender
address of the e-receipts (each sender address appears in ex-
actly one fold). We performed 5-fold cross validation. In
each fold, we sampled 2000 e-receipts from the training set,
trained a CRF model on them, and evaluated it on the test
set. This setting is close to the real scenario – the statisti-
cal model will be applied to e-receipts that are potentially
generated by a different, unseen template.

The result of bootstrapping a supervised learner using the
output of PIEML is promising. We found that the CRF
model had a recall, precision and F1 score of 0.67, 0.85 and
0.75 respectively (averaged over the 5 folds). This suggests
that the product information extracted by PIEML could be
effectively used to bootstrap a CRF to extract more prod-
uct information. Note that the features used by the CRF
are rather simple. With more feature engineering, the CRF
could conceivably achieve better results.

5. RELATED WORK
As a system that discovers templates and patterns to ex-

tract information from machine-generated e-receipts, PIEML
can be viewed as a novel wrapper induction approach. A
wrapper is generally defined as a piece of code that trans-
fer text into some database tuples that represent the tar-
get information [14]. Due to the high labor cost of crafting
domain-specific wrappers for different targets, researchers
have been investigating different ways to automate the pro-
cess of creating wrappers. For example, in the pioneering

work of wrapper induction, Kushmerick et al. defines a spe-
cial wrapper language and proposes an algorithm to learn
the wrappers from human-labeled data [14]. Another ex-
ample is the STALKER system, which is a hierarchical ap-
proach developed by Muslea et al. and can learn wrappers
with fewer labeled data [18].

Although the learning approach significantly reduces the
load of coding wrappers, preparing labeled data for train-
ing becomes the new bottleneck, which inspires a different
branch of research – automatically identifying templates and
patterns without any labeled data. Similar to our Tem-
plateMarking algorithm, systems of this sort usually oper-
ate on the assumption that text generated from the same
template appears repeatedly in the same document or in the
documents from the same source. For example, in IEPAD, a
system developed by Chang and Lui [4] that aims to retrieve
information from a Web page, consecutive text tokens sep-
arated by HTML tags are first substituted by a special tag.
The whole page is then encoded as a binary string to con-
struct a PAT tree to efficiently discover repeated patterns.
In contrast, Arasu and Garcia-Molina proposed a more so-
phisticated method with a formal language that models the
page creation process [1]. In this framework, HTML tags do
not have to be treated as parts of the templates, but can be
included in the target text to be extracted.

Compared to the aforementioned work, PIEML differs in
several ways. First, we aim to discover templates and pat-
terns from plain-text e-receipts instead of Web documents,
where the semi-structured information provided by HTML
tags usually provide more hints of the templates and make
the problem easier. Second, we do not require all documents
in the input corpus to be generated from the same template.
Third, we decouple template marking and pattern discovery
explicitly into two stages. The former focuses on finding
repeated text across different e-receipts using a novel and
principled co-clustering algorithm based on Markov logic;
the latter produces regular expressions for extracting tar-
get information from non-template lines. This design can
be analogous to the approach taken by Patwardhan and
Riloff [19]. Because their goal is to extract information from
human generated, natural language text, they first train a
sentence classifier to filter out potentially uninteresting sen-
tences, and then apply a separate extractor on the remaining
ones.

Finally, our pattern discovery method effectively exploits
an additional database to provide evidence that a sequence
of tokens are indeed a product name. Although the idea
of using a database of target instances has been explored
before, previous approaches label the corpus by matching
the text with the database entries directly for a supervised
learner to train an information extraction classifier statisti-
cally [2], which is quite different from our approach.

When there is less regularity on how the information is
embedded in the text document, statistical learning approaches
that train classification models to predict whether a se-
quence of words is the target information (e.g, the product
name) are usually more effective. Although there exist some
methods that consider all possible word sequences in the
given text as classification candidates (e.g., [23]), most ap-
proaches treat this problem as a sequence labeling problem
and aim to predict the label of each word or token (e.g., [6,
15, 17]). Example token labels in this framework could be
“part of a product name” or “not belonging to any target”.



In addition, such sequence prediction approaches typically
have an inference procedure (e.g., the Viterbi algorithm)
to find the most probable legitimate label prediction dur-
ing run-time. Compared to the wrapper induction methods,
statistical models do not rely on the assumption that text
is generated according to some templates and patterns, but
consider various features describing the target to make the
most probable prediction.

While PIEML works quite effectively when there are enough
e-receipts sampled from the same retailer, experimental re-
sults in Section 4 have shown that statistical learning meth-
ods can be complementary and increase the overall coverage
to handle e-receipts from tail retailers better.

6. CONCLUSION AND FUTURE WORK
We proposed PIEML, a novel unsupervised algorithm that

clusters together plain-text e-receipts that are generated from
the same template, and extracts product information from
them. PIEML simultaneously clusters e-receipts and the
lines in them, marks the lines that are part of a template
in each e-receipt cluster, and extracts product information
from the remaining non-template lines. Empirical results
on a real-world corpus of e-receipts show the promise of
PIEML. The extracted product information has high enough
precision to be used as labeled data to train a supervised
statistical model, allowing more product information to be
extracted.

In the future, we plan to classify emails as e-receipts in a
principled manner, learn the templates of e-receipts without
assuming their general formats, etc.
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APPENDIX
A. DERIVATION OF LOG-POSTERIOR

In the MLN defining the prior component of the posterior
probability, there are two rules. The first rule has infinite
weight, and it states that each e-receipt or line belongs to
exactly one cluster. The second rule has negative weight
−∞<−λ<0), and it penalizes the number of cluster com-
binations. From that MLN, we get

P (Γ) =
exp (∞ · nΓ − λmΓ)

Z

=
exp (∞ · nΓ − λmΓ)P

Γ′ exp (∞ · nΓ′ − λmΓ′)
(1)

where Z is the partition function; nΓ and mΓ are respec-
tively the number of true groundings of the first and second
rules for cluster assignment Γ.

We first consider the case where the first rule is violated
in Γ, i.e., there is an e-receipt or line that does not belong to
exactly one cluster. Note that there is a cluster assignment
in which the first rule is not violated, specifically, the one
where each e-receipt or line is in its own cluster. Let this
cluster assignment be Γu. Rewriting Equation 1, we get

P (Γ) = exp (−λmΓ) /[ exp (∞·(nΓu−nΓ)−λmΓu)

+
X

Γ′\Γu

exp (∞·(nΓ′−nΓ)−λmΓ′) ]. (2)

Since nΓ < nΓu , 0 < λ < ∞, and 0 ≤ mΓu < ∞,

exp (∞ · (nΓu − nΓ)− λmΓu) = ∞. Consequently, the de-
nominator of Equation 2 is ∞, and P (Γ) = 0. Thus when
the first rule is violated, the posterior P (Γ|D) = 0 and
logP (Γ|D) = −∞.

Henceforth we consider the case where the first rule is
not violated. We divide the numerator and denominator of
Equation 1 by exp (∞ · nΓ). Let Γ′′ be a cluster assignment
in the summation of Z. When Γ′′ violates the first rule,
its contribution to the summation is zero. This is because
nΓ′′ < nΓ and exp(∞ · (nΓ′′ − nΓ)− λmΓ′′) = 0. When Γ′′

does not violate the first rule, nΓ′′ = nΓ, and exp(∞·(nΓ′′−
nΓ) − λmΓ′′) = exp(−λmΓ′′). Consequently, we can write
Equation 1 as

P (Γ) =
exp (−λmΓ)P

Γ′′ exp (−λmΓ′′)
=

exp (−λmΓ)

Z′
(3)

where the summation in the denominator is over cluster as-
signments that do not violate the first rule.

Taking logs, we get

logP (Γ) = −λmΓ +K (4)

where K = − log(Z′) is a constant.
Next we derive the likelihood component of the posterior

probability. Since each e-receipt or line belongs to exactly
one cluster γe or γl, each ground atom HasLine(e, l) is in ex-
actly one cluster combination (γe, γl). Let GHasLine(e,l) be
a set of all groundings of the atom prediction rules, and the
(single) grounding of the default atom prediction rule con-
taining ground atom HasLine(e, l) as their consequents. (A
consequent and antecedent respectively appear on the right
and left of the implication symbol ⇒.) Suppose the clus-
ter combination (γe, γl) to which HasLine(e, l) belongs con-
tains at least one true ground atom. Then there is exactly
one grounded atom prediction rule in GHasLine(e,l) whose
antecedent is true. The antecedents of all other rules in
GHasLine(e,l) are false, and the rules are trivially true. Sim-
ilarly, when cluster combination (γe, γl) does not contain
any true ground atom, there is exactly one grounded default
atom prediction rule in GHasLine(e,l) whose antecedent is
true, and all other rules have false antecedents and are triv-
ially true.

From the MLN defining the likelihood component, we get

P (D|Γ) =
exp

“P
i∈F

P
j∈Gi

wigj(D)
”

Z
(5)

where Z is the partition function (different from that of
Equation 1); F is a set containing all atom prediction rules
and the default atom prediction rule; Gi and wi are respec-
tively the set of groundings and weight of the ith rule in
F ; and gj(D) = 1 if the jth ground rule in Gi is true and
gj(D) = 0 otherwise.

In the numerator of Equation 5, we sum over all grounded
rules. We can rewrite the equation by iterating over ground
atoms HasLine(e, l), and summing over grounded rules that
have HasLine(e, l) as their consequents.

P (D|Γ) =
exp

“P
HasLine(e,l)∈D

P
j∈GHasLine(e,l)

wjgj(D)
”

Z
(6)



where GHasLine(e,l) is a set of all groundings of the atom
prediction rules, and the single grounding of the default
atom prediction rule containing ground atom HasLine(e, l)
as their consequents; and wj is the weight of the jth rule in
GHasLine(e,l),

In GHasLine(e,l), there is exactly one grounded rule whose
antecedent is true. All other grounded rules have false an-
tecedents, and are trivially true in all worlds. Such rules
cancel themselves out in the numerator and denominator of
Equation 6. Hence we only need to sum over grounded rules
whose antecedents are true. We can write Equation 6 as

P (D|Γ) =
exp

“P
c∈C

P
j∈Fc

wcgj(HasLinej(e, l))
”

Z′
(7)

where C is a union of cluster combinations containing at
least one true grounding of HasLine, and a default cluster
combination containing only false groundings of HasLine;
Fc is a set of grounded rules with cluster combination c in
their true antecedents and a grounding of HasLine as their
consequents; wc is the weight of the atom predication rule
or default atom predication rule that has c in its antecedent;
HasLinej(e, l) is the ground atom appearing as the conse-
quent of rule j; gj(HasLinej(e, l)) = 1 if HasLinej(e, l) is
true; gj(HasLinej(e, l)) = 0 otherwise; and Z′ is the parti-
tion function.

Because a ground atom HasLine(e, l) is in exactly one
cluster combination c, and appears in exactly one grounded
rule with c in its the antecedent, we can factorize Z′, and
write Equation 7 as

P (D|Γ)

=

Y
c∈C

Y
j∈Fc

exp (wcgj(HasLinej(e, l)))Y
c∈C

Y
j∈Fc

X
HasLinej(e,l)∈{0,1}

exp (wcgj(HasLinej(e, l)))

=
Y
c∈C

Y
j∈Fc

exp (wcgj(HasLinej(e, l)))X
HasLinej(e,l)∈{0,1}

exp (wcgj(HasLinej(e, l)))

=
Y
c∈C

Y
j∈Fc

exp (wcgj(HasLinej(e, l)))

1 + exp(wc)

=
Y
c∈C

„
exp(wc)

1 + exp(wc)

«tc „ 1

1 + exp(wc)

«fc

(8)

where tc and fc are respectively the number of true and false
ground HasLine(e, l) atoms in cluster combination c.

By differentiating Equation 8 with respect to wc, setting
the derivative to 0, and solving for wc, we find that the re-
sulting equation is maximized when wc = log(tc/fc). Sub-
stituting wc = log(tc/fc) in Equations 8, and taking logs,
we get

logP (D|Γ) =
X
c∈C

tc log

„
tc

tc + fc

«
+ fc log

„
fc

tc + fc

«
. (9)

Adding smoothing parameters α and β, we get

logP (D|Γ) =X
c∈C

tc log

„
tc+α

tc+fc+α+β

«
+fc log

„
fc+β

tc+fc+α+β

«
. (10)

(In our experiments, we set α + β = 10 and α
α+β

to the

fraction of true HasLine groundings.) Separating the de-
fault cluster combination c′ containing only false groundings
ofHasLine from the set of cluster combinations C+ contain-
ing at least one true grounding of HasLine, we obtain

logP (D|Γ) =X
c∈C+

tc log

„
tc + α

tc + fc + α+ β

«
+ fc log

„
fc + β

tc + fc + α+ β

«

+fc′ log

„
fc′ + β

fc′ + α+ β

«
. (11)

logP (Γ|D) = logP (Γ) + logP (D|Γ) + K′ where K′ is a
constant. Using the values of the prior and likelihood, we
get

log(P (Γ|D)

=

8>>><>>>:
−∞ if an e-receipt or line is not in exactly one clusterX
c∈C+

tc log
“

tc+α
tc+fc+α+β

”
+ fc log

“
fc+β

tc+fc+α+β

”
+fc′ log

“
fc′+β

fc′+α+β

”
− λmΓ +K′′ otherwise

where K′′ = K + K′ is a constant. (When comparing can-
didate cluster assignments to find the one with the best log-
posterior, we can ignore K′′ because it is a constant.)


